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Dynamical tunneling in mixed systems
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Max-Planck-Institut fu¨r Kernphysik, Postfach 103980, 69029 Heidelberg, Federal Republic of Germany

~Received 3 July 1997!

We study quantum-mechanical tunneling in mixed dynamical systems between symmetry-related phase
space tori separated by a chaotic layer. Considering, e.g., the annular billiard we decompose tunneling-related
energy splittings and shifts into sums over paths in phase space. We show that tunneling transport is dominated
by chaos-assisted pathsthat tunnel into and out of the chaotic layer via the ‘‘beach’’ regions sandwiched
between the regular islands and the chaotic sea. Level splittings are shown to fluctuate on two scales as
functions of energy or an external parameter: they display a dense sequence of peaks due to resonances with
states supported by the chaotic sea, overlaid on top of slow modulations arising from resonances with states
supported by the ‘‘beaches.’’ We obtain analytic expressions that enable us to assess the relative importance of
tunneling amplitudes into the chaotic sea versus its internal transport properties. Finally, we average over the
statistics of the chaotic region, and derive the asymptotic tail of the splitting distribution function under rather
general assumptions concerning the fluctuation properties of chaotic states.@S1063-651X~97!10312-9#

PACS number~s!: 05.45.1b, 03.65.Sq
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I. INTRODUCTION

A detailed understanding of how the coexistence of cl
sically regular and chaotic phase space areas is reflecte
the corresponding quantum dynamics poses one of the c
lenging problems in the field of ‘‘quantum chaos’’@1#. Even
though semiclassical theories exist for the two limiting ca
of fully integrable @2#, or fully chaotic classical dynamic
@3#, the quantum mechanical properties of systems w
‘‘mixed’’ classical dynamics have to date not been amena
to a semiclassical formulation. The quest for such a theor
highlighted by the fact that mixed systems comprise the m
jority of dynamical systems found in nature.

Out of the wealth of phenomena reported in mixed s
tems, a particularly interesting one is genuinely quantum m
chanical in nature: tunneling. A situation that has receiv
much attention is the one in which tunneling takes pla
between distinct, but symmetry-related regular phase sp
regions separated by a chaotic layer. Interest surged wh
was discovered that energy splittings can increase dram
cally with chaos of the intervening chaotic layer@4–6#. This
was attributed to a suggested mechanism ofchaos-assisted
tunneling @5,7,8# in which tunneling takes place not in
single tunneling transition, but in a multistep process c
taining tunneling transitions between regular tori and
chaotic region, as well as chaotic diffusion inside the chao
sea. Since a large part of the phase space distance is
traversed via classically allowed transitions, indirect pa
can be expected to carry considerably more tunneling
than direct ones.

Additional evidence was given by the observation th
apart from an overall enhancement, the tunneling splitti
vary rapidly over many orders of magnitude as a function
energy, Planck’s constant\, or other system parameter
This was attributed to the occurrence of avoided crossi
between regular doublets and chaotic states@5#, which made
it possible to further establish chaos-assisted tunneling
studying its effect on statistical properties such as the s
ting distribution function. Comparison with predictions
571063-651X/98/57~2!/1421~23!/$15.00
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appropriate random matrix models showed very good ag
ment @1,8,9#. However, the lack of a semiclassical descr
tion of the tunneling processes remained as a gap betw
the quantum and the classical picture, and — more imp
tantly — the size of the tunneling amplitudes was unkno
in the systems under study, which made adirect andquan-
titative treatment of the phenomenon impossible.

Both of these problems were addressed in an earlier p
lication by the authors of this work@10# in which a semiclas-
sical analysis of tunneling processes in the annular billi
was performed, and a formula for the contribution of cha
assisted paths to the energy splitting was derived. Here,
give a detailed account of our findings. Particular empha
will lie on the description of how the tunneling rate is a
fected by phase-space structures within the chaotic reg
namely, the existence of an intermediate ‘‘beach’’ regi
sandwiched between classically regular islands and the
otic sea.

The structure of this paper is as follows. In Sec. II, w
review the basic ideas underlying this work. Also, we intr
duce the model system under consideration, the annular
liard. In Sec. III, we introduce the method of our analys
the scattering approach to the quantization of closed syste
and explicitly construct the ‘‘scattering matrix’’S for the
annular billiard. We then show in Sec. IV how the scatteri
matrix approach can, under rather general assumptions
implemented to the study of tunneling in phase space.
explain howS can be approximated by a five-block matr
model with different blocks representing regular dynam
on either of the islands, beach motion close to each isla
and chaotic dynamics in the center of the chaotic sea.
derive formulas forS-matrix eigenphase shifts and splitting
in terms of paths passing through different combinations
blocks, laying emphasis on the effects arising from the inc
sion of the beach blocks. Additionally, we track how tunn
ing flux spreads in phase space and give a detailed discus
of the interplay of tunneling probabilities into, and transpo
properties within the chaotic layer. Finally, in Sec. V w
calculate statistical quantities — such as the splitting dis
1421 © 1998 The American Physical Society
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1422 57S. D. FRISCHAT AND E. DORON
bution function and median values for the splitting —
averaging over the properties of the chaotic block. We c
clude with a discussion.

II. DYNAMICAL TUNNELING

A. Classical and quantum mechanics of mixed systems

1. Correspondence of wave functions with classical structures

Systems with classically mixed dynamics display bo
regular and chaotic behavior, depending on the starting c
ditions of the trajectory considered. The structure of ph
space can conveniently be probed by use of aPoincarésur-
face of section (PSOS)@11#, a phase space cutG giving rise
to thePoincarémap

~Q,P! i°~Q,P! f , ~Q,P! i / f5„Q~xi/f !,P~xi/f !…,

where (Q,P) is a set of canonically conjugate variables, a
xi / fPG are connected by the system dynamics. If one st
out with highly localized distributions and plots iterates
the Poincarécell CP5$„Q(x),P(x)…:xPG%, then chaotic ar-
eas show up as areas that quickly become more or less
formly covered, while regular motion remains confined
lower-dimensional manifolds onCP. In a mixed system, both
types of structures appear, and one arrives at plots ofCP such
as the one presented in Fig. 2~see below!.

In order to associate a system’s quantum eigenstatec
with classical features—such as chaotic regions or reg
tori—one often uses theWigner transformation@12# of the
projector uc&^cu. By smoothing over minimal-uncertaint
wave packets one obtains theHusimi distribution@13# that
defines a real, non-negative probability density in ph
space. We will tacitly invoke the Wigner-Husimi concept
the following when referring to the correspondence of qu
tum states with phase-space structures.

To our knowledge, no general theory for the quantizat
of mixed systems has been available until now. However,
understanding has emerged that, in the semiclassical l
quantum states can unambiguously be classified as ‘‘re
lar’’ and ‘‘chaotic’’ ~for a review, see@5#!. Regular states are
supported by classical tori obeying Einstein-Brillouin-Kell
~EBK! quantization rules@2#, whereas chaotic states are a
sociated with chaotic phase-space regions~or subsets of it
@14#!. The structure of chaotic states is to date not fully u
derstood and is presently the subject of intensive resea
Classification of states as regular and chaotic can bec
problematic at intermediate energy~or \), since EBK-like
quantization rules can apply also to states residing on cha
phase-space regions lying in close proximity to the regu
island@15,16,6#. Loosely speaking, the regularity of classic
islands can quantum mechanically extend into the cha
sea, and states of an intermediate nature emerge.

2. Effect of phase-space symmetries

To discuss the effect of phase-space symmetries on
structure of quantum states, we consider a system wi
discrete twofold phase space symmetryT. We suppose tha
there are two disjoint phase-space objects,A1 andA2, each
of which is invariant under the classical dynamics, mapp
onto another by the symmetry operation,A25TA1. We also
-
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assume that, in the semiclassical limit, each of theA1/2 sup-
ports a set of states primarily localized on it. Let us, for t
sake of definiteness, consider the case when theA1/2 are
EBK-quantized tori. On each of the tori, one can constr
quasimodesc r

(1)(q) and c r
(2)(q)5c r

(1)(Tq) that obey the
Schrödinger equation to any order of\ @17#. The corre-
sponding EBK energy eigenvaluesEr are then degenerate t
any order in\. However, exact quantum states are co
strained to be symmetric or antisymmetric underT,

c r
6~q!'

1

A2
@c r

~1!~q!6c r
~2!~q!#, ~1!

and the energy degeneracy is lifted by tunneling processe
an amountdEr , giving rise to tunneling oscillations with
period 2p\/dEr .

The best-known example of quantum-mechanical tunn
ing oscillations is the one-dimensional symmetric dou
quantum well, where the phase-space symme
T(x,p)5(2x,2p) connects regular tori in each of the wel
~for a careful discussion along the above line of argume
see @8#!. In systems of more than two-dimensional pha
space, symmetries can give rise to more intricate situatio
The toriA1 andA2 must not necessarily be separated by
energy barrier in configuration space~see, e.g.,@18#!, but the
transition fromA1 toA2 can also be forbidden by adynami-
cal law. In this case, there is a dynamical variable other th
energy that is conserved by classical dynamics, but viola
by quantum dynamics@19,20#. The case of quantum double
connected by tunneling processes of this type was first
ported by Davis and Heller@21# who also coined the term
dynamical tunneling. A particularly clear example of dy-
namical tunneling will be presented in Sec. II C in the d
cussion of the annular billiard. As in the case of energy b
rier tunneling, splittings due to dynamical tunneling can
expected to be very small, since classical transport fromA1
to A2 is forbidden.

Note that the formation of doublets is determined by t
phase-spacetopologyof the supporting region, not its regu
larity or chaos. The occurrence of doublets has also b
observed in situations in which the localizing mechani
was due to dynamical localization@16,6,22# or scarring@23#.
Conversely, a phase-space structureB5TB mapped onto it-
self supports states that do not form doublets, regardles
its dynamical nature.

B. Chaos-assisted tunneling

Apart from the possibility of dynamical tunneling, tunne
ing processes in systems of more than one degree of free
can have an additional aspect of interest: the appearanc
chaos in the region of phase space traversed by the tunn
flux. As an early paradigm of such a system, Lin and B
lentine @4# proposed the periodically driven double well p
tential, where chaos can gradually be introduced by incre
ing the driving strength. Lin and Ballentine performed
numerical study of tunneling oscillations between states
sociated with regular tori corresponding to classical mot
confined to either bottom of the well. They observed that,
the separating phase-space layer grows more chaotic
increasing driving strength, tunneling rates are enhanced
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57 1423DYNAMICAL TUNNELING IN MIXED SYSTEMS
orders of magnitude over the rate in the undriven system@the
integrable one-dimensional~1D! double well#. In a later
study of the same system, Utermannet al. @6# established
that the tunneling rate of a wave packet initially localized
one regular island is determined not by the wave pack
overlap with the other island, but by its overlap with th
chaotic sea, pointing at a role for classically chaotic diffus
as a mediator of quantum tunneling flux.

In a parallel and simultaneous line, Bohigas, Tomsov
and Ullmo advocated the interpretation that the enhancem
of tunneling was a case ofresonanttunneling due to the
occurrence of avoided crossings of the tunneling doubl
eigenenergies with the eigenenergy of a state residing on
intervening phase-space layer@5#. For obvious reasons, th
phenomenon was namedchaos-assisted tunneling. The inter-
pretation of tunneling enhancement in terms of a three-le
process was derived from the observation that splittings
regular doublets are rapidly fluctuating quantities as fu
tions of parameters such as energy, Planck’s constant\, or
other model parameters.

Since a semiclassical description of tunneling matrix e
ments was lacking, Bohigas and co-workers focused on
statistical fingerprints of chaos-assisted tunneling, with e
phasis on the consequences of resonance denominato
the splitting distribution. To this end, the interaction of reg
lar doublets with chaotic states was formulated in terms o
block matrix model@5#, in which properties of states residin
on the chaotic sea were approximated by use of random
trix theory @24#. This model was subsequently refined
Tomsovic and Ullmo@8# to take into account the effect o
additional time scales in the chaotic dynamics that can
pear when residual phase-space structures, such as ca
are present in the chaotic sea acting as imperfect trans
barriers. Predictions made using these block-matrix mod
showed good agreement with numerically calculated sp
ting distributions. Along these lines, Ullmo and Leyvraz@9#
were also able to derive analytic expressions for the split
distributions in the case of structureless chaotic dynamics
well as for a structured chaotic sea. Again, theoretical p
dictions showed good agreement with exact numerical d

C. The annular billiard

We now introduce the specific system under considera
in this work, the annular billiard. It was proposed by Bohig
et al. @7# and consists of the area trapped between two n
concentric circles of radiiR anda,R centered at (x,y) co-
ordinatesO[(0,0) andO8[(2d,0), respectively. We con
sider the case ofd,a and setR51, unless otherwise stated
Note that the billiard is symmetric under reflections at thex
axis.

1. Classical dynamics

Classical motion in a billiard is given as free flight b
tween specular reflections at the boundaries. We selec
PSOSG as a circle of radiusr concentric with the outer
circle and chooser to be infinitesimally smaller than one
Upon in-bound passage throughG—or, equivalently, after
reflection from the outer circle—we record the trajectory
coordinates (g,L), whereg denotes the angle of the velocit
vector with thex axis andL5sina is the classical impac
’s
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parameter with respect toO ~see Fig. 1!. (g,L) are canoni-
cally conjugate with respect to thereducedaction @20#, and
the Poincare´ cell is given byCP5@0,2p#3] 21,1@ . The bil-
liard’s mirror symmetryy°2y translates into an invarianc
of CP under the mapping (g,L)°(2p2g,2L).

In Fig. 2 we present a Poincare´ plot of CP at parameter
valuesa50.4 andd50.2. Rays ofuLu.a1d do not hit the
inner circle, but forever encircle the inner disk at constanL
filling horizontal strips~or subsets of horizontal strips! in
the Poincare´ plot. Each of thesewhispering gallery~WG!
tori @7#, specified by its impact parameterL, is associated
with a partner torus2L by the mirror symmetry. These WG
tori will be the tunneling tori under consideration in th
work.

Rays of intermediate impact parameteruLu,a1d will
eventually hit the inner circle, and since angular moment
is then not preserved, motion is no longer integrable. T
can give rise to the whole range of phenomena associ
with nonintegrable systems of mixed phase space: reg
islands and island chains, chaotic regions, partial trans
barriers ~cantori! and the like. The structure of the phas
space layer uLu,a1d is, at parameter value
d50.2, a50.4, primarily organized by two fixed points o
the Poincare´ map:~i! an unstable fixed point at (g,L)5(0,0)
and its stable and unstable manifolds, along which a cha
region spreads out, and~ii ! a stable orbit (g,L)5(p,0) at the
center of a regular island of ‘‘libration’’ trajectories. Th
fixed points correspond to rays along the symmetry axis
the left hand side and on the right hand side of the in
circle, respectively.~Note that the stability of these orbits ca
change for varyingd anda.!

FIG. 1. Parametrization of classical trajectories. Note that co
dinates (g,L) are not the Birkhoff coordinates (w,L) usually em-
ployed in billiards. The two coordinate sets are related
w5g1a2p, wherea5arcsin(L/R).

FIG. 2. Poincare´ plot of classical motion in the annular billiard
at a50.4 andd50.2.
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1424 57S. D. FRISCHAT AND E. DORON
It will turn out to be of great importance that there is
region of chaotic, but relatively stable motion surroundi
each regular island. In the strip ofuLu&a1d this stability is
easy to understand, as trajectories typically encircle the in
disk many times until a hit occurs, and at each hit the cha
in impact parameter is small. The ‘‘stickiness’’ of this bea
region is increased by the presence of regular island ch
and of cantori that are the remains of broken WG tori.

2. Quantum mechanics

Quantum mechanics of the annular billiard with Dirichl
boundary conditions is given by the Helmholtz equation

~D1k2!c~q!50

and the requirement of vanishing wave function on the t
circles. The wave numberk is related to energy by
E5\2k2/2m. ~We note that there exists an analogy betwe
quantum billiards and quasi-two-dimensional microwa
resonator, which has proven instrumental in many exp
mental realizations of billiard systems@25#.!

We give here only a qualitative picture of the quantu
states, deferring a full solution to Sec. III B. It is most a
propriate to decompose the wave function into angular m
mentum components by writing

c~r ,w!5 (
n52`

`

i n@anHn
~2!~kr !1bnHn

~1!~kr !#einw, ~2!

where (r ,w) are polar coordinates with respect toO, and
Hn

(1,2)(x) denote Hankel functions of the first and seco
kind, respectively, of ordern. We recall that angular momen
tum quantum numbersn are in the semiclassical limit relate
to classical impact parametersL5n/k.

To understand the nature of quantum states supporte
the annular billiard, it is instructive to first consider the co
centric billiard and then to ‘‘turn on’’ the eccentricityd. If
d50, then angular momentum is conserved, and states
paired in energetically degenerate doublets composed o
gular momentum componentsn and 2n. In the eccentric
system (dÞ0), the degeneracy is lifted by the breaking
rotational invariance. However, angular momentum doub
are affected to different degrees—depending on the sizen
relative tok(a1d). The symmetry breaking has large effe
on doublets of small angular momentumunu,k(a1d) cor-
responding to classical motion that can hit the inner circ
For low-n doublets, the doublet pairing disappears quic
with increasingd and ‘‘chaotic’’ eigenstates appear th
spread out in angular momentum components roughly
tween 2k(a1d) and k(a1d). High-angular momentum
doublets withunu.k(a1d) are affected only little by the
symmetry breaking. The doublet pairing persists, and ene
degeneracy is only slightly lifted. States are primarily co
posed of symmetric and antisymmetric combinations on
and2n angular momentum components,

ua~6 !&'
1

A2
~ un&6u2n&). ~3!
er
e

ns

o

n
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Note that each of the quasimodesu6n& corresponds to clas
sical motion on the WG torus6L.

We present plots of a ‘‘regular’’ doublet quantized
k'55 and a ‘‘chaotic’’ state atk'60 in Fig. 3 and compare
them to classical trajectories with starting conditions in t
chaotic sea and on WG tori, respectively. The corresp
dence between quantum states and the nature of clas
dynamics is clearly visible.

3. Tunneling between whispering gallery tori

Let us discuss the high-angular momentum doublets
more detail. As explained above, the energy splittingdEn

betweenua(1)& and ua(2)& gives rise to tunneling oscilla
tions between quasimodesu6n& associated with WG tori
6L56n/k (L.a1d). A quantum particle prepared in
state un& will therefore change its sense of rotation fro
counterclockwise to clockwise and back to counterclockw
with period 2p\/dEn . Note that this tunneling proces
serves as a particularly clear example of dynamical tunn
ing. It occurs inphase spacerather than configuration space
as the corresponding tori are identical in configuration spa
Also, the tunneling process does not pass under a pote
barrier in configuration space. In fact, energy does not p
any role in the tunneling, as energy is related only to
absolute value of the momentum vector and not to its dir
tion. Rather, the tunneling process violates thedynamical
law of classical angular momentum conservation for rays
large impact parameter.

The concept of chaos-assisted tunneling can be nicely
sualized for the case of tunneling between WG modes in
annular billiard. In fact, the annular billiard was proposed
a paradigm for chaos-assisted tunneling in Ref.@7#. In chaos-
assisted processes, tunneling tori6L are connected not by

FIG. 3. Comparison of classical dynamics and quantum state
the annular billiard.~a!–~c! classical motion:~a!,~c! regular trajec-
tories of 6L, uLu.a1d, ~b! chaotic trajectory ofuLu,a1d.
~a!–~c! eigenmodes:~a!,~c! doublet of ‘‘regular’’ eigenstates a
k'54.434, and~b! ‘‘chaotic’’ eigenstate atk'60.252.
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57 1425DYNAMICAL TUNNELING IN MIXED SYSTEMS
direct transitions betweenn°2n, but by multistep transi-
tions n°l •••2l 8°2n. A particle tunnels fromn to
some l &k(a1d), traverses the chaotic phase-space la
by classically allowed transitions to reach the opposite s
of the chaotic sea2l 8*2k(a1d), and finally tunnels
from there to2n. To establish this notion, Bohigaset al. @7#
checked the behavior of splittings as the eccentricity
changed to make the intervening phase-space layer m
chaotic. In a numerical study, they compared the splittings
regular doublets with the rate of classical transport across
chaotic layer. The findings showed that the splittings
crease dramatically over many orders of magnitude as
otic transport becomes quicker.

However, without a quantitative—possibl
semiclassical—theory, it is impossible to separately anal
the importance of tunneling amplitudes and transport pr
erties of the intervening chaotic layer. Usually, the parame
governing symmetry breaking in a mixed system chan
both tunneling amplitudes from and/or into the regular tor
and chaos in the intermediate layer. In order to separate
relative importance of these effects, a quantitative und
standing of the tunneling processes must be obtained. Su
quantitative description of chaos-assisted tunneling w
given in Ref.@10# and will be developed in full detail in the
following.

III. QUANTIZATION BY SCATTERING

A. General description of the method

In this work, we will employ a scattering approach
quantization@26,27# that, in essence, is constructed as
quantum-mechanical analogue of the classical Poincare´ sur-
face of section method. For the sake of self-containedn
we give a brief review of the scattering method.

Let us consider the case of a billiardG and introduce a
Poincare´ cut G in configuration space, thereby dividingG
into two parts,G1 andG2 . We suppose thatG can be chosen
along a coordinate axis~the q2 axis, say! and that the wave
problem is separable on an infinitesimal strip aroundG. At a
given energy, one chooses a complete set of functi
fn

(2)(q2) alongG and writes the wave function on an infin
tesimal strip aroundG as

c~q!5(
n

@anfn
~1,2 !~q1!1bnfn

~1,1 !~q1!#fn
~2!~q2!. ~4!

fn
(1,1) and fn

(1,2) are functions that, in the semiclassic
limit, correspond to waves traversingG in the positive and
negativeq1 direction, respectively. We assume that the
fn

(2)(q2) is chosen such that quantum numbersn correspond
to valueskn

(2) of longitudinal wave number. Then,kn
(2) and

transverse wave numberskn
(1) are related by En

5\2@(kn
(1))21(kn

(2))2#/2m. Note that orthogonality of the
modes onG is ensured by the choice of thefn

(2) . Each of the
domains G6 constitutes a scattering system that scatt
wavesfn

(1,1)fn
(2) into wavesfn

(1,2)fn
(2) andvice versa. As-

sociated with these scattering systemsG6 are scattering ma
tricesS6(E) that relate the coefficient vectors

b5S2~E!a and a5S1~E!b. ~5!
r
e

s
re
f

he
-
a-

e
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The quantization condition is equivalent to the requirem
of single-valuedness of the wave function onG, and so to the
equivalence of the two scattering conditions. The syst
supports an eigenstate whenever the product matrix

S~E![S2~E!S1~E!

has an eigenvalue of unity, hence the quantization condi
reads

det@S~E!21#50. ~6!

At a quantized energy, the wave function can be rec
structed from the corresponding eigenvectora of S via Eqs.
~4!,~5!. In principle, S is an infinite-dimensional matrix
However, in many cases of interest one can choose
fn

(1,1)fn
(2) so that in the region of classically allowed mo

tion, the contributionufn
(1,6)(q1)u is exponentially small for

all but a finite number of indices~the so-called ‘‘open chan
nels’’!. This allows the truncation ofS to a finite dimension,
say unu<L, with an error that is exponentially small. Bot
scattering matricesS6 can be constructed in a representati
such that they are unitary in the space of open modes an
the system is time-reversal invariant, symmetric.S on the
other hand is unitary, but not necessarily symmetric. In sp
of this, we will in this paper also refer toS as a scattering
matrix.

It is clear by construction thatS is the quantum-
mechanical analogue of the Poincare´ mapping@28#. Its Nth
iterate SN constitutes a time-domain-like propagator. No
that the iteration countN of the Poincare´ map does not cor-
respond to a stroboscopic discretization of time, but rathe
a fictitious discrete time, since generally the time elaps
between passages ofG can vary.

B. Scattering matrix of the annular billiard

It is fairly straightforward to implement the scattering a
proach to the case of the annular billiard. As discussed
Sec. II C, we chooseG as a circle of radiusr , where
a1d,r &1. Since a classical impact parameter is co
served by motion on the WG tori, we chooseq25w
andfn

(2)5exp(inw) on G. Waves traversingG are given by
outgoing and ingoing cylinder waves fn

(1,1)

5 i nHn
(1)(kr), fn

(1,2)5 i nHn
(2)(kr), and we obtain the de

composition in Eq.~2!,

c~r ,w!5 (
n52`

`

i n@anHn
~2!~kr !1bnHn

~1!~kr !#einw. ~7!

In the present example, outgoing waves are scattered to
going waves by the interior of the outer circle—giving rise
the scattering conditiona5S(O)(k)b—and ingoing waves
are reflected off the exterior of the inner circle, which lea
to the relation b5S(I )(k)a. The product matrix
S(k)5S(O)(k)S(I )(k) then reads@10#
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Sn,m~k!5 i ~n2m!
Hn

~1!~kR!

Hn
~2!~kR!

(
l 52`

`

Jn2l ~kd!

3Jm2l ~kd!
H l

~2!~ka!

H l
~1!~ka!

.

@Note that this formula forS(k) differs by a factori (n2m)

from the one given in@10# due to a slightly different choice
of basis in Eq.~7!. Consequently, the matrix symmetries a
different now.#

Using the relationH2n
(1,2)(x)5(2)nHn

(1,2)(x) for integern,
one verifies that the spatial symmetry of the annular billia
translates into theS-matrix symmetry

S2n,2m5Sn,m . ~8!

For eigenvectorsa( j ) of S,

a2n
~ j ! 5s jan

~ j ! , ~9!

wheres jP$61%. Whenever the system supports an eige
state,s j determines the symmetry of the corresponding wa
function with respect to thex axis.

In Fig. 4, we show a gray-scale plot ofuSn,mu as a function
of ingoing and outgoing angular momentum for the para
eter valuesa50.4, d50.2, k5100. The overall struc-
ture of S is governed by classically allowed transitions: it
mainly diagonal in the region of high angular momentu
unu,umu.k(a1d), whereas the inner block reflects the d
namics given by the classical deflection function. Here,
main amplitude is delimited by two ridges that correspond
classical rainbow scattering.

The tunneling amplitudes relevant to the WG splitting a
contained inS as nondiagonal entriesSn,m with n.k(a1d).
Figure 5 depictsuSn,mu for the above parameter values a
n570 @at k(a1d)560#. The tunneling amplitudes are larg
est (;1024) aroundm563 and fall off faster than exponen
tially away from this maximum. As can be seen in the in
of Fig. 5, the line of maximal tunneling amplitudes continu
the line of rainbow ridges into the regime of classically fo
bidden transitions. Close to these tunneling ridges, and in
direction away from the diagonal, one can observe osc

FIG. 4. Gray-scale plot of the quantumS matrix uSn ,mu ~arbi-
trary gray scale!. The dashed line indicates the region of classi
angular momentum mixingunu,k(a1d).
d

-
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-
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e
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tions in uSn,mu that resemble the Airy oscillations well know
in diffraction theory @29#. It is interesting to note that the
behavior of the tunneling probabilities isnot a monotonic
function of un2mu, that is, of the phase-space distance t
versed. A meredistance in phase space can therefore n
serve to estimate the behavior of tunneling probabilities.

We finally mention that the tunneling transitions cons
ered here can be given a semi-classical interpretation
terms of complex rays that interact with the analytical co
tinuation of the inner circle to complex configuration spa
@10,30,31#. These rays can either scatter off the inner co
plex circle by a generalization of specular reflection, or th
can creep along a complexified inner circle~of complex ra-
dius determined by the poles of the internal scattering m
trix! by a mechanism similar to that proposed by Franz@32#
and Keller@33#. Every tunneling pairni ,nf is connected by
at least one complex reflection trajectory with real init
~final! impact parameterLi5ni /k (L f5nf /k) and complex
initial ~final! angle g i (g f), as well as complex creepin
trajectories of same initial and final conditions. The relati
importance of the two contributions depends onk, the bil-
liard geometry, and the initial and final angular momen
considered. At the present parameter values, the contribu
due to reflected rays usually dominates the one arising f
creeping rays.

The semiclassical picture provides an intuitive explan
tion to the tunneling ridges mentioned above: they can
identified as combinationsn,m where one of the angle
g i ,g f is closest to reality. Also, the nearby oscillations c
be understood as arising from a coalescence of two reflec
saddle points.

IV. TREATMENT OF CHAOS-ASSISTED TUNNELING

A. Implementation of the scattering approach

We now discuss how the scattering approach can
implemented to the treatment of chaos-assisted tunne
Let us suppose that the system under consideration h
phase-space symmetry of type (q2 ,p2)°(2q2 ,2p2), and
that theq2 axis can be chosen as a PSOSG. We assume tha
the wave problem is locally separable aroundG, which ren-

l FIG. 5. Absolute values of tunneling matrix elementsuSn,mu for
n570 andm52100, . . .,100~logarithmic scale!. Inset: first quad-
rant of S, showing the tunneling ridges.~Taken from Ref.@10#.!
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57 1427DYNAMICAL TUNNELING IN MIXED SYSTEMS
ders the problem tractable by the scattering approach. Le
now pick two classical objectsA1 andA25TA1 and con-
sider quasimodesc r

(1/2)(q) supported byA1/2, as discussed
in Sec. II. We assume that motion onA1 andA2 corresponds
to conservation ofp2 and2p2, respectively, and that6p2 is
semiclassically related to the quantum number6n. ~Note
that in a general system, the choice of the PSOSG and a
proper basis for the scattering matrix can be a very diffic
task. In this paper, we will not deal with the problem
solving a general scattering problem — except for the an
lar billiard — and assume the scattering matrixSn,m to be
known.! By symmetry p2°2p2, we find that Sn,n
5S2n,2n , and by virtue of the classical conservation
p2 , Sn,n is almost unimodular. The deviation ofuSn,nu
from unity will be due to classically forbidden~i.e., tunnel-
ing! transitions, and so is expected to be small.

Let the quantization energies of the doublet be denoted
En

6 , and letua6(En
6)& be the eigenvectors corresponding

the two quantum states. We now make the approxima
that the properties of these two vectors are, to good pr
sion, given by the eigenvector doubletua6(E)& at onefixed
energy E lying betweenEn

1 and En
2 . The corresponding

~generally nonzero! eigenphases be denoted byun
6(E).

Dropping the energy variableE, we decompose the eigen
phasesun

6 in the form

un
6[un

~0!1Dun
~R!1 iDun

~ I !6 1
2 dun , ~10!

whereDun
(R,I ) are taken to be real, andun

(0)52 i lnSn,n . The
quantitiesDun5Dun

(R)1 iDun
(I ) and dun can be interpreted

as the shift and the splitting, respectively, of the exact eig
phases due to tunneling processes. These eigenphase q
ties are trivially related to the energy shift and splitting,
will be explained below, and it is therefore sufficient to ca
culateDun anddun . Note that theun

6 are real by unitarity of
S, and therefore alsoun

(0)1Dun anddun are real quantities
We also note that

@SN#6,6[^a6uSNua6&5eiNun
~0!

exp~ iN@Dun6 1
2 dun# !

~11!

for any integerN.
From the eigenvector doubletua6& we can now obtain the

vector equivalent of quasi-modes

u6n&[
1

A2
~ ua1&6ua2&). ~12!

It is clear thatun& and u2n& are localized at~or around!
components6n, respectively. Using the symmetry ofS and
ua6&, we write

@SN#1,16@SN#2,252^nuSNu6n&. ~13!

In order to derive formulas forDun
(R) anddun that relate

these quantities to matrix elements ofSN, we now combine
Eqs.~11! and ~13!. We choose a positiveN, which satisfies

N!uDun6dun/2u21 ~14!
us

lt

-

y

n
i-

-
nti-

s

and expand the second exponential in Eq.~11! to first order.
Considering upper signs in Eq.~13! and taking imaginary
parts we obtain

Dun
~R!'

1

N
Im$e2 iNun

~0!

^nuSNun&%. ~15!

Similarly, taking lower signs in Eq.~13! gives

dun'
2

N
Im$e2 iNun

~0!

^nuSNu2n&%. ~16!

It is instructive to rephrase Eq.~16! for the splitting: start-
ing from Eqs.~11!,~13! one can also contract the expone
tials to a sine and arrive at

UsinS Ndun

2 D U5u^nuSNu2n&u, ~17!

which has the form of tunneling oscillations in time
usin(dEt/2\)u5u^nuexp(2iHt/\)u2n&u, with iteration countN
taking the role of time and eigenphase splitting taking
role of energy splitting. By considering Eq.~16! we therefore
probe the onset of tunneling oscillations in the linear regim

Use of Eqs.~15!,~16! for low N will, however, necessitate
precise knowledge of the eigenmodesu6n& ~see e.g.,@34#
for a recent application of a similar formula forN51). How-
ever, to exponential precision, eigenvectors may be jus
difficult to obtain as the shift or the splitting itself. It i
therefore important to realize that use of Eqs.~15!,~16! for
large N may allow one to extract the quantities of intere
using much less precise eigenvector information. Inste
one then usesdynamicalinformation—in the framework of
time-domain-like propagation withS—which will eventually
allow the interpretation of tunneling processes in terms
sums over paths in phase space. To this end, let us refo
late Eq.~12! by writing

ua6&5
1

A2
~ un&6u2n&)1(

m
km

6um&, ~18!

where thekm
6 are expected to be small andk2m

6 56km
6 ,

according to the symmetry ofua6&. The right-hand side of
Eq. ~13! then reads

2^nuSNu6n&52@SN#n,6n1Cn
~N,6 ! . ~19!

Here,@SN#n,6n denotes a matrix element of theNth iterate of
S, andCn

(N,6)5cn
(N,1)6cn

(N,2) with

cn
~N,6 !5A2 (

m
~km

6@SN#n,m1~km
6!* @SN#m,n!

1 (
m,m8

~km
6!* km8

6
@SN#m,m8. ~20!

We see that̂nuSNu6n& can be replaced bŷnuSNu6n& at the
price of correctionsO(k) at most. However, since the le
hand side of Eq.~19! is of size sin(NDun/2);O(1) ~consid-
ering the positive sign! for largeN, the first term on the right
hand side must also grow withN and become ofO(1). In
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1428 57S. D. FRISCHAT AND E. DORON
particular, forN@k/uDun
(R)u, the k corrections can be ne

glected. The same holds for the negative sign in Eq.~19!, but
then N@k/udunu must hold. Therefore, whenever either
these lower bounds onN holds simultaneously with the up
per bound~14! we can write

Dun
~R!'

1

N
Im$e2 iNun

~0!
@SN#n,n%, ~21!

dun'
2

N
Im$e2 iNun

~0!
@SN#n,2n%. ~22!

We note that the conditions onN necessary for Eq.~21! are
met if uDunu.udunu, which, as we will find later, is always
the case. However, the conditions for Eq.~22! might not be
met simultaneously. In this case, one has to expand in
~17! to obtain

udunu'
2

N
u@SN#n,2nu, ~23!

requiring k/udunu!N!udunu21—a condition that can al-
ways be fulfilled~if k!1). However, we will in the follow-
ing calculate the splitting by use of Eq.~22!, as this expres-
sion constitutes a linear relation between the splitting and
different contributions. We therefore assume that the us
Eq. ~22! is justified and only comment on the use of Eq.~23!.
@We note that Eq.~23! was employed in an earlier account
this work @10#.#

Returning to Eqs.~21!,~22! recall that any matrix elemen
@SN#n,m can be expressed as asum over pathsin matrix
element space of lengthN that start atn and end atm by
writing out the intermediate matrix multiplications. Th
yields the real part of the shift and the splitting as

Dun
~R!'

1

N
ImH e2 iNun

~0!

(
$n→n%

)
i 51

N21

Sl i ,l i 11J , ~24!

dun'
2

N
ImH e2 iNun

~0!

(
$n→2n%

)
i 51

N21

Sl i ,l i 11J . ~25!

The eigenphase shift and the splitting are therefore give
terms of paths of lengthN that lead from indexn back ton
or to 2n, respectively. Note that in order to contribute to t
shift, the path must leave the indexn at least once; the trivia
path of constant matrix indexn does not contribute, a
exp(2iNun

(0))@SN#n,n51 is real.
For the sake of completeness, we also comment on

imaginary part of the shift. Sinceun
(0)1Dun is real,

Dun
(I )52Im$un

(0)%. By unitarity of S, one finds

Dun
~ I !'2

1

2 (
mÞn

uSn,mu2. ~26!

It remains to connect eigenphase shifts and splittings
the corresponding energy quantities. At a given ene
E—which need not necessarily be an eigenenergy of
system—the eigenphasesu j (E) are distributed on the uni
circle, with the position of regular doublets determined
Eqs.~10!,~24!, and~25!. Regular doublets revolve around th
q.

e
of

in

he

to
y
e

unit circle with ‘‘velocity’’ ]un
6/]E']un

(0)/]E given by the
energy dependence of theun

(0)(E). These quantities can b
taken constant on the scale of the energy splittings,
eigenenergy splittings are therefore trivially related to eig
phase splitting. Consequently, we will in the following co
sider shifts and splittings ofeigenphasesrather than eigenen
ergies. This has the numerical advantage that we
considerS(E) at anyE without having to worry about quan
tization.

In order to extract the shift or the splitting of the doubl
peaked at indices6n we therefore have to consider paths
the S-matrix index space that lead fromn back ton or to
2n, respectively. Let us briefly focus on the splitting.
principle, there are two types of paths:direct paths and
chaos-assistedones@4,5,7#. Direct paths tunnel directly from
n to 2n in a single transition over a long distance in pha
space. Their contribution to the splitting is of the ord
uSn,2nu. Chaos-assisted paths include at least two tunne
transitions over relatively small phase-space distances. T
tunnel fromn to some indexl such thatl lies in the inner
block of classically chaotic motion, then propagate — v
classically allowed transitions — to somel 8 within the in-
ner block and finally tunnel froml 8 to n. Contributions
arising from chaos-assisted paths are then of the o
uSn,l Sl 8,2nu. As we have seen in the example of the annu
billiard, tunneling matrix elementsSn,l fall off very rapidly
~faster than exponential! for large phase-space distanc
un2l u. This rapid decay strongly suppresses the contri
tions from direct paths and explains why the combination
two tunneling transitions can be much more advantageo

B. A block-matrix model

We now formulate a generalization of the block matr
models usually encountered in the treatment of cha
assisted tunneling@5,8# that takes into account the effect o
the transition region between classically regular and cha
motion.

Statistical modeling of chaos-assisted tunneling is usu
done in terms of a block matrix model of the typeregular-
chaotic-regularin which properties of the chaotic block ar
approximated by random matrix ensembles@5#. This three-
block approximation, however, discards all informatio
about phase-space structures inside the chaotic sea, su
the inhibition of mixing by broken invariant tori~cantori!
@35#. Inhibition of classical transport can lead to dynamic
localization of states in regions of phase space. Chaotic st
then do not extend over the full chaotic region of phase sp
any more, but only over components of it. This addition
structure would not be reproduced by the approximation b
single random matrix block. Block matrix models for chao
assisted tunneling were amended to the presence of impe
layers in Refs.@8,9# by introduction of separate, weakly cou
pling blocks for each of the phase-space components. A
lationship between classical flux crossing imperfect transp
barriers and quantum Hamiltonian matrix elements w
given in Ref.@1#.

We now argue that the treatment of chaos-assisted tun
ing in a generic mixed system usually requires afive-block
model at least. The reason is that classical motion in
‘‘beach’’ regions close to a regular domain is relative



la
a
ity

la
io
s
e
f
lin

a

ns
c

s-
a

n
xi
ha

c
in

,
is

rit

a

er

t
n
ers
rix
ll

oice
ge

f
not

a

odd

in-
by

f-
ing
ing

n —
he
ach

in

as
it-
to
ase

n
m

ks

57 1429DYNAMICAL TUNNELING IN MIXED SYSTEMS
stable, despite its long-time chaotic behavior. In particu
transport in the direction away from the regular phase-sp
region can be strongly inhibited. This dynamical stabil
leads to the formation of quantumbeach statesthat have
most of their amplitude in the beach region and little over
with the chaotic sea. It has been reported on many occas
that beach states have great similarity to regular states re
ing on the adjacent island and that they follow EBK-lik
quantization rules@15,36,16,6#. Note that the importance o
the beach region is highlighted in chaos-assisted tunne
processes: as tunneling amplitudesSn,l decay rapidly away
from the regular island, chaos-assisted paths of largest
plitude will typically lead to indicesl and l 8 such that the
corresponding momentaP2(l ) and P2(l 8) lie just inside
the chaotic sea on either side, that is, in the beach regio

In order to take account of the special role of the bea
regions~or ‘‘edge’’ regions, we will use these two expre
sions as synonyms!, we propose to generalize the usu
three-block modelregular-chaotic-regularto a five-block
model of the typeregular-edge-chaotic-edge-regular. ~In
this work we assume that, apart from the edge layers,
further transport-inhibiting structures are present. The e
tence of further transport-inhibiting structures inside the c
otic sea will require the addition of further blocks.!

In the following, we approximateS by a five-block model
S̃ as depicted in Fig. 6 in which each regular region, ea
beach region and the center chaotic region are modeled
separate block, and coupling between different blocks
weak. We assume thatS̃ has, by a unitary transformation
been converted such that all intrablock transitions van
We use indicesn and 2n8 for the properties of the two
regular blocks,l and2l 8 for the beach blocks, andg for
chaotic states. For the diagonal elements, we w
S̃l,l5exp(i ũl), where lP$n,l ,g,2l 8,2n8%. Note the
symmetries S̃n,n5 S̃2n,2n and S̃2l ,2l 5 S̃l ,l , and
therefore u2n5un , ũ 2l 5 ũ l . Interblock coupling ele-
ments are denoted byS̃n,l , S̃n,g , S̃l ,g and so on. It is
natural to assume that the tunneling elementsS̃n,l between
regular tori and the beach region will be much smaller th

FIG. 6. The modified block-matrix model: structure of bloc
participating in therecer contributions.
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the transition amplitudesS̃l ,g between beach and the cent
block.

We now explain how the properties ofS̃ can be extracted
from the original matrixS. Note that a block that is almos
diagonalS̃ will be changed only little in the transformatio
to S. The outermost regular blocks are diagonal in all ord
of 1/k ~or \), and matrix elements of the transformed mat
will differ from the original ones only by exponentially sma
corrections. We can therefore approximateS̃n,n8'Sn,ndn,n8.
The argument also holds for the edge region, since the ch
of basis for the regular blocks will also be good in the ed
blocks, and we can approximateS̃l ,l 8'Sl ,l d l ,l 8 and in the
nondiagonal blockS̃n,l 'Sn,l . Consequently, the choice o
the border index between regular and edge blocks does
affect the results to the present approximation.

We model quantum dynamics within the inner block by
superposition of two Gaussian ensembles@37,38,28# — in
our case two circular orthogonal ensembles~COE! @39# —
that approximate the sets of chaotic states with even and
symmetry, respectively. For a given regular moden coupling
matrix elementsS̃n,g are chosen as Gaussian distributed
dependent random variables of variance determined
sn,C

2 5u S̃n,Cu2/(2l COE11) with

u S̃n,Cu25 (
g52l COE

l COE

uSn,gu2, ~27!

where we have taken the chaotic block to extend froml COE

to 2l COE. Coupling matrix elementsS̃l ,g are defined
analogously,

u S̃l ,Cu25 (
g52l COE

l COE

uSl ,gu2, ~28!

The choice ofl COE contains some uncertainty that will a
fect the results as an overall factor in the effective coupl
elements. Note that an approximation for single coupl
matrix elementsS̃n,g , S̃l ,g in terms of the originalS-matrix
elements — or, even more, as a semiclassical expressio
is presently not possible, as too little is known about t
precise nature of the quantum localization on the be
layer. Also, standard semiclassical methods break down
the beach.

For brevity of notation, we will drop the tildes onS̃ and
ũ .

C. Extracting the shift, splitting, and eigenvector structure

We now use the block matrix model and formul
~24!,~25! to extract approximations for the shift and the spl
ting of eigenphase doublets. Also, we comment on how
extract eigenvector structure and to calculate eigenph
properties from it.

1. Eigenphase splitting

When using Eq.~25! and the block matrix representatio
of S to calculate the splitting, we have to perform the su
over paths
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Pn,2n
N [ (

$n→2n%
)
i 51

N21

Sl i ,l i 11

of lengthN@k/udunu. As N is large~and under the assump
tion that none of the internal diagonal elementsSl i ,l i

is

equal toSn,n) it is sufficient to collect contributions that ar
of orderN. We consider three families of paths: paths of ty
regular-regular ~rr! that contain one single jump fromn to
2n, paths of typeregular-chaotic-regular~rcr! that pass
through the center block, and pathsregular-edge-chaotic-
edge-regular~recer! that pass through all five blocks. Addin
up the different contributions gives the eigenphase splitt
as a sum:

dun'dun
~rr!1dun

~rcr!1dun
~recer! . ~29!

Within each of these families, one has to sum over indice
staying times of the path at each diagonal element. We s
in Appendix A how this can be done and quote the result:
sum over paths withM11 jumps passing throughM inter-
mediate blocksS( i 1 ,i 1), . . . ,S( i M ,i M) is given as

Pn,2n
N~ i 1 , . . . ,i M !

;Nei ~N21!un
~0!

(
l1 , . . . ,lM

Sn,l1 )i 51

M Sl i ,l i 11

eiun
~0!

2eiul i

,

~30!

where the sums over theln run over all indices of the cor
responding blocksS( i n ,i n), and lM1152n. Corrections to
Eq. ~30! are of lower order inN or higher order in transition
amplitudes. The phase denominators

eiun
~0!

2eiul i[dn,l i

arise from the summation over staying timesTi at the differ-
ent blocks. Within a given family, each path contributes
factor exp@iTi(uli

2un
(0))#, and geometrical summation overTi

results in the denominators listed. Note that only phase
ferences appear that combine the outermost phaseun

(0) with
one of the phasesul i

of the inner blocks. Contributions con

taining other phase denominators decay exponentially inN.
Also, we have only taken into account paths that p
through each of the inner blocks once. This ‘‘never lo
back’’ approximation is justified since paths containing loo
are of higher order in the interblock transition elements. F
a treatment of loops in index space, see Appendix A.

Let us now discuss the contributions of the different fam
lies in turn. For paths of typeregular-regular, we apply Eq.
~30! for M50 and find

dun
~rr!'2 Im$e2 iun

~0!
Sn,2n%;uSn,2nu. ~31a!

Chaos-assisted paths of typeregular-chaotic-regularvisit
the center block. By application of Eq.~30! for M51, we
find that the rcr contribution to the splitting is

dun
~rcr!'2 ImH e2 iun

~0!

(
g

Sn,gSg,2n

dn,g
J . ~31b!

Finally, the pathsregular-edge-chaotic-edge-regularpass
through three intermediate blocks (M53), hence
g

of
w
e

f-

s

s
r

-

dun
~recer!52 ImH e2 iun

~0!

(
g,l ,l 8

Sn,l

dn,l

Sl ,g Sg,2l 8
dn,g

S2l 8,2n

dn,l 8
J .

~31c!

One sees that all tunneling rates mediated by internal blo
can be strongly enhanced by two effects.

~1! Combinations of tunneling matrix elements may b
come progressively more advantageous as more steps
allowed.

~2! Coherent summation over staying times results
phase denominators. Avoided crossings of these phases
the splittings into a rapidly fluctuating quantity with respe
to small changes in energy, say, or an external paramete
the system. The phase denominators also lead to anoverall
increase in the tunneling rate since, at a given wave num
k, there are of orderk internal states available. This mean
that typically, there will be one phase denominator of s
dn,g

21;k/2p at least.
Both effects,~1! and~2!, can also enhance the recer co

tributions with respect to the rcr ones. We can therefore
pect the recer contributions to dominate the tunneling ra
For a given system, their relative importance may vary,
pending on the size ofuSn,gu and uSn,l Sl ,g /dn,l u.

2. Eigenphase shift

Paths that contribute to the real part of the shift lead fr
n back ton and have to leave this index at least once. To
so, they can tunnel either to the center block or to the e
block, which leads to a decomposition of contribution into

Dun
~R!'Dun

~rer!1Dun
~rcr!1Dun

~recer! .

The summation over these paths can be done by the s
procedure used above, and one finds that the contribution
the real part of the shift are

Dun
~rer!5ImH e2 iun

~0!

(
l

Sn,l Sl ,n

dn,l
J , ~32a!

Dun
~rcr!5ImH e2 iun

~0!

(
g

Sn,gSg,n

dn,g
J , ~32b!

Dun
~recer!5ImH e2 iun

~0!

(
g,l ,l 8

Sn,l Sl ,gSg,l 8Sl 8,n

dn,l dn,gdn,l 8
J .

~32c!

Due to the rapid decay of tunneling matrix elements we
pect that uDun

(rer)u@uDun
(recer)u*uDun

(rcr)u. Furthermore from
Eqs. ~31c!,~32c!, uDun

(recer)u.udun
(recer)u. Consequently, the

shift will typically be much larger than the splitting.

3. Eigenvectors

We can also use the block matrix model to approxim
regular eigenvector doubletsa6. We set an

651/A2 and
a2n

6 561/A2, and solve

~S2eiun
6

!a650
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to leading order in the coupling matrix elements betwe
neighboring blocks~neglecting all other coupling matrix el
ements!. We find that the components ofa6 in the beach
regions are

a l
6'

1

A2

Sn,l

dn,l
~33a!

anda2l
6 56a l

6 . Components in the center block are giv
by

ag
65

A2

dn,g
(

l

Sn,l Sl ,g

dn,l
5sg(

l 8

A2

dn,g

Sg,2l 8S2l 8,2n

dn,l
,

~33b!

if the symmetrysgP$61% of the block-diagonalizing vecto
ug& is the same as that ofa6, andag

650 otherwise. In both
Eqs.~33! the relative error isO(uSn,l u2/dn,l ,uSl ,gu2/dn,g).

This approximation for the eigenvectors can be used
relate eigenphase properties to the size of eigenvector c
ponents in the different blocks. Upon comparison of E
~32a! and~33a!, we see that the dominant contribution to t
shift can be written as

Dun
~rer!52 ImH(

l
e2 iun

~0!
dn,l ~a l !2J , ~34!

wherea is either of thea6. Therefore, the eigenphase sh
is related to the eigenvector’s overlap with the beach reg
Similarly, from Eqs.~31c! and ~33b!,

dun
~recer!5ImH(

g
e2 iun

~0!
dn,g@~ag

1!22~ag
2!2#J . ~35!

Equation~35! relates the presumably dominant contributi
to the splitting to the eigenvector’s overlap with the cen
block. This explains and quantifies the observation of Ut
mann et al. @6#, that regular doublet splittings in a mixe
system are in close correlation with the states’ project
onto the chaotic sea. Similarly, Gerwinski and Seba@40#
related tunneling rates between a chaotic phase-space re
and a regular island to the overlap of a chaotic scatte
state with the regular island. However, we see that thead hoc
association

uDunu;(
l

ua l u2, udunu;(
g

uagu2 ~36!

is not complete: in the exact relation~35!, each summand is
weighted by a phase difference.

4. Comments

In view of the explicit formulas, we see that the results a
not significantly changed by approximating the regular a
edge blocks ofS̃ by the corresponding elements of the orig
nal matrix S. Only in the immediate vicinity of resonance
between regular and beach eigenphases the approxim
S̃l ,l 'Sl ,l is not appropriate, as it overestimates the ima
nary part of the phaseu l and leads to a spuriously broa
resonance.~With the neglect ofDu l

(R) we shall not be con-
n

o
m-
.

n.

r
r-

n

ion
g

e
d

ion
i-

cerned, because we do not aim at an exact reproductio
the peak positions.! For most beach states, it is therefo
more appropriate to make the somewhatad hocapproxima-
tion of u l 5arg$Sl ,l % instead of2 i lnSl ,l . This approxi-
mation now leads to an underestimate of the resona
width, but we have checked that in the cases discusse
Sec. IV D the edgel is sufficient large (l >59) that the
resonancesuSn,n2 S̃l ,l u21 anduSn,n2exp(iul )u21 cannot be
distinguished by eye.

From a methodological point of view, it is worthwhil
mentioning that the formulas for the shift and the splitti
can also be derived from a complementary approach. O
can expand the characteristic polynomial

PS~x!5det~S2x!

of S aroundxn5exp(iun
(0)) to second order in the externa

coupling elementsuSn,l1
u, uSlM ,2nu, and then solve for its

rootsx6, PS(x6)50. Upon definition of shift and splitting
via x65xn1Dx6dx/2, one finds formulas that, to lowes
order in the internal coupling elements, are identical to E
~31c!,~32a!. Hence, the ‘‘never look back’’ summation ove
paths corresponds to the lowest order of a formal expan
of the eigenvalues, containing the coupling elements as s
parameters.

It is important to realize that the different phase denom
nators dn,l and dn,g may fluctuate on different scalesas
functions of the energy or an external parameter. Typica
the center block will be much larger than the beach bloc
and avoided crossings ofun

(0) with one of theug will occur
more often than those with one of theu l . Also, since beach
states display EBK-like behavior with actions that can
similar to those of the regular states, we can expect ph
differencesun

(0)2u l to vary more slowly than phase differ
encesun

(0)2ug . ~For the case of the annular billiard, a sem
classical argument is given in Ref.@23#.! Consequently,
eigenphase splittingsdun

(recer) will show fluctuations ontwo
scales: there will be a rapid sequence of peaks due to avo
crossings of regular eigenphases with chaotic ones an
slow modulation due to the relative motion of regular a
beach eigenphases.

Let us conclude by summarizing those predictions t
genuinely depend on the explicit inclusion of the beach l
ers into the five-block matrix model:

~I! Eigenphase splitting: contributing paths typically pa
through all blocks. As a function of an external paramet
the splitting varies on two scales: a slow one attributed to
change of thedn,l

22 , and a rapid one attributed to the chan
of the dn,g

21 . Consequently, one sees resonances of diffe
line shapes.

~II ! Eigenphase shift: paths contributing to the shift typ
cally visit only the beach layer. The shift is much larger th
the splitting, and it varies withdn,l

21 on the slow scale only.
None of these statements would hold for the three-blo

model, and therefore~I! and ~II ! can serve as a test of ou
five-block model.

D. Numerical results

We now give numerical examples of the formulas ju
presented. In particular, we will give the most quantitati
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1432 57S. D. FRISCHAT AND E. DORON
and direct proof of the chaos-assisted tunneling picture
Also, we will test the predictions derived from the explic
treatment of the beach layer in our five-block matrix mod
Again, we consider the annular billiard at parameter val
k5100, a50.4 andd50.2.

First of all, we have to decide on where to set the bord
between the different blocks. As already mentioned,
outer borders between the regular blocks and the edge bl
do not pose any problem as in both blocks, matrix eleme
are approximated by the corresponding matrix elements
the original S matrix. Due to the tunneling ridges in th
region l *k(a1d), paths starting from highn will most
likely tunnel into this region first. In order to include thes
paths, we extend the beach region into the regular bl
whenever necessary.

The border between the beach region and the cha
block is more difficult to determine. In Sec. IV E we giv
numerical evidence that some of the beach states’ struc
arises from trapping of classical motion near KAM-like reg
lar island extending into the chaotic sea down to impact
rameters uLu'0.55. This would suggest the choice
ul u555 for the borders between the edges and the cha
block. However, chaotic states that can carry transport
tween positive and negative angular momenta have siz
overlap only with angular momentum components betw
l 5250 and l 550. Therefore, we will take the chaoti
block to extend over angular momentaul u<l COE550. The
uncertainty inherent in the choice ofl COE affects the final
results via the effective couplingsSl ,g , Sn,g , which can
therefore only be determined up to an overall constan
order one.

Let us briefly discuss the magnitudes of the tunneling a
plitudes involved in the different contributions to the spl
ting. As expected, the directn to 2n tunneling matrix ele-
ment is of negligible size. At the present parameter val
du70

(rr);uS70,270u;10260, which is many orders of magnitud
smaller than the observed splittingdu70;10210. The differ-
ence between contributionsdun

(rcr) anddun
(recer) is less dras-

tic. At the parameter values considered, effective coup
elementsSn,l Sl ,g /dn,g are usually at least an order of ma
nitude larger than the correspondingSn,g .

The dominance of recer contributions is particularly cle
when studying the behavior of shift and splitting as a fun
tion of an external parameter. We show in Fig. 7 the s
and the splitting of the doubletn570 as obtained from nu
merical diagonalization of theS matrix as a function of the
outer circle’s radiusR50.985–1.025.R varies over a suffi-
ciently small interval as to leave the classical billiard dyna
ics essentially unchanged. The choice ofR as an externa
parameter has the advantage that the tunneling magnit
given by theinner scattering matrixuSn,l u5uSn,l

(I ) u remain
constant, as variation ofR affects only theouter scattering
matrix S(O).

Figure 7~a! displays the real part of the shiftDun
(R) . The

shift varies slowly as a function ofR and is over long range
well reproduced by just a single term of Eq.~31c!. ~The
dashed line showsuS70,59

2 /d70,59u with d70,59'u70
(0)2u59 ex-

tracted fromS, slightly shifted to account forDu59.) Over
relatively large ranges ofR, one singlel is clearly domi-
nant. Transitions between domains of different dominanl
t.
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are marked by very small shifts due to cancelations betw
contributing paths. Figure 7~b! shows the splitting of the
same doublet. Note that the logarithmic scale in plot~b!
ranges over twice the number of orders of magnitude tha
~a!. As predicted by the five-block model, the splitting
much smaller than the shift and shows variations on t
scales. The overall, slow modulation is determined by
beach resonance}d70,59

22 and closely follows the behavior o
the shift. On top of this modulation lies a rapid sequence
spikes that we attribute to quasicrossings with eigenphase
the internal block.

For thel 559 contribution to the splitting~dashed line!,
we used Eq.~ 52! of the next section to estimate the medi
taken over the properties of the chaotic block and divided
a factor;15 to make the dashed line coalesce with the sp
ting away from thedn,g-resonances. Note that the change
dominant edge indexl is signaled by a strong cancelation
tunneling paths. In the inset, we compare the line shape
the two types of resonances by plottingudu70u as a function
of uR2Rpu in a double logarithmic plot near the ‘‘beach
peak (Rp50.9946, full circles! and a ‘‘chaotic’’ peak
(Rp51.0043, empty circles!. Power laws with exponents22
and 21 are obeyed to good precision, thus confirming t
prediction of the five-block model.

It is evident that the predictions of the five-block mod
serve very well to explain the data. We stress again that
effects just described — different line shapes and fluct
tions on two parameter scales — genuinely depend on
role of the beach layer in tunneling processes. They serv
clear fingerprints of the quantum implications of the pre
ence of a beach layer between phase-space regions of
sically regular and chaotic motion.

Let us, however, mention that the correspondence
tween shift and splitting can be less clear. For largen the
shift can show additional modulations that do not appea
the splitting whenever there is a degeneracy with an be
mode with largel @30#. In the shift, this resonance i
weighted with uSn,l u2, which favors l near the tunneling
ridge. In the splitting, the resonance’s contribution has
weight uSn,l Sl ,gu2 that can become very small ifl is too
large. This does, however, not contradict the predictions~I!
and ~II !, it merely means that shift and splitting arise b

FIG. 7. ~a! Eigenphase shiftDun
(R) and ~b! splitting dun of the

doublet n570 for different values of the radiusR of the outer
circle: exact results as obtained by numerical diagonaliza
~circles! and contribution predicted by the block matrix model th
is dominant betweenR'0.99 andR'1.015~dashed line, see text!.
Inset: power-law dependence of splitting nearRp50.9946 ~full
circles! andRp51.0043~empty circles!. Throughout, full lines are
to guide the eye.
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FIG. 8. Spread of tunneling flux over the chaotic sea: buildup of quantum amplitude in the beaches. Gray-scale plots~arbitrary scale! of
averaged autocorrelations of the~a! 50th,~b! 100th, and~c! 500th iterate of a vector peaked atn566. The initial componentn has been left
out. Full lines indicate classical tori.
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coupling to different beach modes.
For later purposes it is important to note that whene

the same beach state is dominant in both shift and splitt
the correspondence between the shift and the slow mod
tions of the splitting can be used to ‘‘unfold’’ the splittin
data from beach properties. By Eqs.~31c!,~32a!, the ratio

dũn5
4

p

dun

@Dun
~R!#2USn,l

Sl ,C
U2

;
1

uSl ,Cu2U(g

Sl ,g Sg,2l

dn,g
U

~37!

then contains only properties of the center block and
therefore be used to extract its ‘‘bare’’ quantities.

E. Evolution of tunneling flux on the PSOS

Let us recall that the scattering matrixS is the quantum
analogue of the classical Poincare´ mapping; it constitutes a
time-domain-like propagator in the representation fixed
Eq. ~4!. This makes it possible to study the evolution
‘‘wave packets’’ — vectorsa0 corresponding to initial con-
ditions localized in phase space — under the action ofS. In
particular, it is here of interest to follow the evolution of
tunneling process in phase space.

The comparison of quantum dynamics and classical ph
space can, in the context of the scattering approach to q
tization, conveniently be done by use of Wigner- a
Husimi-like functions of quantum operators@41,23#. Let A
be some operator that, for definiteness, we represent in
gular momentum basis. As explained in detail in Ref.@23#,A
can be transformed to a functionrH@A#(g,L) on the Poin-
carécell CP by first performing a Wigner-transform onA and
then smoothing with a minimal-uncertainty wave pack
One obtains

rH@A#~g,L !5(
l l 8
Al ,l 8expH 2Dg2

2 F S kL2
l 1l 8

2 D 2

1~ l 2l 8!2G2 ig~ l 2l 8!J ,

where (g,L) are the coordinates inCP, k is the wave num-
ber, andDg2 is a parameter determining the shape of
smoothing wave packet. We chooseDg254/k. In the case
thatA5a•a† is the projector of a~normalized! vectora, its
transformra

H(g,L) constitutes a positive semidefinite, no
malized density distribution on the Poincare´ cell, theHusimi
r
g,
la-

n

y

se
n-

n-

.

e

PoincaréDensity~HPD!. By use of HPDs, it becomes pos
sible to follow the phase-space evolution of a tunneling p
cess from one regular torus to its counterpart. The ‘‘dyna
ics’’ ~in iteration countN as the time variable! of such a
process is visualized by projecting iteratesvN5SNv0 of
some initial vectorv0 onto CP.

Returning to the annular billiard, we consider a starti
vectorv0 peaked at high angular momentumn and calculate
the Husimi densitiesrH@^vN•vN

† &# of averaged autocorrela
tions

^vN•vN
† &5 (

M50

50

ṽN1M•ṽN1M
†

in which the mean over 50 iterations has been performe
order to average out the internal dynamics of the cen
block. The tilde indicates that thenth component ofv has
been set to zero.~This truncation is necessary because
smoothing tails of the largenth component would obscur
all features in the nearby beach regions.!

Figure 8 depicts the flow of tunneling probability onCP
by showingrH@^vN•vN

† &# for n566 andN550, 100, and
500. At these parameter values, the tunneling period betw
WG tori is 2p/du66;107. As predicted by the five-block
matrix model, probability is fed from the starting angul
momentumn into the nearby beach region until it reaches
value;uSn,l u2 (l 558) and spreads over the chaotic sea
to a value;uSn,l Sl ,Cu2; see Fig. 8~a!. Oscillations between
the beaches set in with period 2p/du58;1000; see Figs. 8~b!
and 8~c!. On a much larger time scale, probability amplitu
starts to build up at at2n ~not shown here!. One clearly sees
that the shape of the HPD is structured by the underly
classical dynamics: in the beaches, most probability bu
up around the chains of small KAM-like islands, whereas
the chaotic sea, the center island and its satellites are
penetrated. Also, the regions around the satellite islands
the homoclinic tangles between them are filled only weak

Chaotic phase space can also be filled in a different m
ner, depending on the phasesun , u l , and ug involved in
the tunneling process. In Fig. 9 we present the case of a c
degeneracy betweenun and one of theug . We show
^vN•vN

† & for N54000 and the starting vectorv0 peaked at
n565. In this case, there is high probability amplitude in t
sticking regions around the center satellite islands.

Finally, we present in Fig. 10 HPDs of nine eigenvecto
of S at k5100, a50.4, andd50.2 (k5100, one should
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1434 57S. D. FRISCHAT AND E. DORON
note, is not an eigenenergy of the annular billiard!. By the
Weyl formula@42# these vectors would, when quantized a
close-by energy, correspond to the;2000th exited states
We show gray-scale plots of HPDsra

H with steps in gray
scale corresponding to equidistant probability contour lin
The overall scales vary with each subplot. These HPD
hand, the spread of tunneling amplitude can now be un
stood in terms of participating eigenvectors. For examp
the doublet depicted in Figs. 10~b! and 10~c! is the beach
doublet involved in the tunneling process of Fig. 8. Lik
wise, the vector 10~f! peaked around the center satellite
lands is the nearly degenerate one in the tunneling pro
shown in Fig. 9. Evidently, their shape forms the spread
tunneling probability on the Poincare´ cell.

FIG. 9. Spread of tunneling flux over the chaotic sea: case
direct degeneracy between the regular doublet and an internal
Gray-scale plot~arbitrary scale! of averaged autocorrelation of th
4000th iterate of a vector peaked atn565.
s.
at
r-
,

ss
f

We note that similar figures for much higher wave nu
ber k5600, corresponding to the;75 000th excited states
can be found in Ref.@23#.

F. How important is chaos?

Let us now discuss a numerical study similar to that p
formed in the original work by Bohigaset al. @7# in which
regular level splittings are calculated as a function of ecc
tricity d at constanta1d. It is important to note that increas
ing d has two effects: classical motion in the inner lay
uLu,a1d becomes chaotic, and simultaneously tunnel
rates from the regular torus to the chaotic layer are enhan
A priori, it is not clear which one of these effects governs t
rate at which the splittings change, but a quantitative e
mate of either effect has now become possible.

We calculated the splittings of high-angular-momentu
modes ford50.03–0.2 anda1d50.6 atk560. Figure 11
displays the eigenphase splittingudunu for n539 (n/k
50.65). Exact splittings~full lines! increase over eight or
ders of magnitude and roughly follow an exponential
crease withd. A description of the data in terms of ou
block-matrix model that reproduces all the fine details mig
be a difficult task—even with exactS-matrix elements at
hand—as the model relies on classical information to se
the borders between the different blocks and assumes
apart from the beach layers, no significant phase space s
ture is present. Therefore, the block-matrix model wou
have to be adjusted to the varying classical dynamics ad
changes, and the effect of remaining structure at lowed
might have to be taken into account with the introduction
different blocks. However, the now familiar slow modul

a
te.
te

FIG. 10. Poincare´ Husimi distributions of selected eigenvectors of the annular billiard atk5100, a50.4, andd50.2. ~a! Regular

high-angular momentum vector,~b!,~c! doublet of beach vectors,~d,e! ‘‘chaotic’’ vectors,~f! vector in the sticking region around the satelli
islands,~g! regular vector on the period-6 satellite islands,~h! regular vector residing on the main island, and~i! vector scarred by the
unstable period-1 fixed point and its homoclinic crossings~dots depict the stable and unstable manifolds!.



e
a
g
tw

te

el
ou
tte

ir
d

n
th

he
na
fo
e

T

a
er
up

lar
h

n

k

el-

re-
ans-

p-

and
an-
de-

ica-
ond

t of
ob-

ted

e

wed
to
re

it-

by
ller
and
ht-
u-

-

e

ed

57 1435DYNAMICAL TUNNELING IN MIXED SYSTEMS
tions in Fig. 11 point to the effect of beach layer states m
diating the tunneling flux—however complicated the intern
structure might be. Indeed, we find that over the ran
d50.07–0.16 the tunneling processes are mediated by
beach states peaked aroundl 529, with l /k50.48 well in-
side the nonintegrable regime. In Fig. 11, we have plot
uSn,l u2 as a dotted line~with arbitrary offset! to give a rough
estimate of the change of regular-to-beach tunneling
ments via these particular beach states. Taking into acc
also the effect of beach denominators, we have plo
uSn,l /dn,l u2 ~dashed line!. This estimate is multiplied with
an overall factor 231025 to make the line coincide with the
exact data at smalld. The dashed line already gives a fa
reproduction of the data. It misses only the sharp peaks
to resonances with the chaotic states, the depression ofdun

between thedn,l
22 peaks due to destructive interference, a

the change of coupling strength of the beach state to
chaotic center states. We conclude that betweend50.07 and
d50.2, the splitting is predominantly determined by t
change ofbeachparameters, and that the change of inter
coupling between beach and chaotic sea accounts only
factor of the order 10~difference between the dashed lin
and the exact data atd50.15). For largerd, different beach
doublets take over, but the basic structure is preserved.
dashed-dotted line displays the recer contributions forl 535
and l COE520.

At d values below 0.07, numerical precision does not
low us to calculate the splitting directly. We can, howev
get an impression by looking at the splitting of states s
ported by quasi-integrable structures at smalld. Presumably,
these states will mediate the tunneling of high-angu
momentum doublets. In Fig. 12, we show the splitting of t
doublet predominantly peaked atl 527 (l /k50.45). The
splitting shows resonance peaks belowd'0.075 and then
flattens out. This behavior can be understood by looking
the HPDs of the states involved. In Fig. 13 we depict o
partner of the tunneling doublet and its resonant state
~a!–~c! d50.0402,~d!–~f! d50.0687, and~g!,~h! d50.09.
In the corresponding classical Poincare´ cells, we have started
trajectories from initial conditions (p,L) with L.0 only to
indicate the classical inhibition of transport. We can ma

FIG. 11. Eigenphase splittingudunu of doubletn539 as a func-
tion of eccentricityd: exact splittings~full line!, increase of torus-
to-beach tunneling matrix elements (l 529 dotted line, with arbi-
trary overall factor!, and effect of regular-to-beach phas
denominators~dashed line, with arbitrary overall factor!. For
d.0.15: tunneling vial 535 ~dashed-dotted line!.
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two interesting observations: first of all, the resonant tunn
ing process is mediated byregular states residing on the
inner island. Resonant tunneling via the center island
mains the dominant mechanism, even when classical tr
port from positive to negativeL becomes allowed@Figs.
13~d!–13~f!#. Here, tunneling between achaotic doubletis
mediated by aregular state. Secondly, the outer doublet su
ported by the KAM-like tori at smalld evolves into a doublet
of states scarred near the unstable periodic orbit
stretched along its stable and unstable manifolds. By qu
tum localization effects, the doublet structure persists —
spite the seemingly chaotic classical motion~see also@23#!.
Tunneling between the scarred doublet is direct, as ind
tions of resonances are absent in the splitting bey
d50.075.

We are led to the conclusion that the enhancemen
tunneling rates between symmetry-related phase-space
jectsA andTA by resonance with quantum states suppor
by an intervening phase-space structureB is only very
loosely related to the chaos ofB, but rather depends on th
topologicalcharacter ofB. In B, it must merely be possible
to traverse a phase-space distance in classically allo
steps. It might therefore be more appropriate to refer
‘‘transport-assisted tunneling,’’ a phenomenon of a mo
general class than the chaos-assisted tunneling one.

V. STATISTICAL ANALYSIS OF EIGENPHASE
SPLITTINGS

A. Asymptotic behavior of the splitting distribution

This section is devoted to the distribution of level spl
tings. We determine the asymptotic large-dun behavior of
the splitting distribution and find ‘‘typical’’ splitting values
by calculating the median of the distribution obtained
extrapolation of the asymptotic behavior towards sma
splittings. We assume that recer contributions dominate
that properties of the beach blocks vary slowly. It is straig
forward to apply the calculation to the case of rcr contrib
tions as well.

Starting from Eq.~31c! we introduce a number of nota
tional simplifications. For a givenn, we write phases with
respect toun

(0) ~that is, setun
(0)50), definexg52 sin(ug/2),

and collect the coupling of6n to a chaotic stateg via the
edge into an effective overlap

FIG. 12. Eigenphase splitting of a doublet peaked aroundl 527
at k560 as a function ofd. Here, resonances arise from avoid
crossings with states residing on the center island.
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FIG. 13. Classical phase space and Husimi Poincare´ distributions of the tunneling doublet of Fig. 12 and its resonant states at~a!–~c!
d50.0402,~d!–~f! d50.0687 and~g!,~h! d50.09. The doublet resides on KAM-like tori for smalld and dissolves in the chaotic sea fo
large d. Note that the tunneling atd50.0687 takes place between a chaotic doublet and is mediated by a regular state. Atd50.09, the
dominant tunneling process is direct.
w

w
io

th

r
r

s
a

ri-

g

vn,g522 ReH (
l ,l 8

e2 i ~ug1u l 1u l 8!/2

3
Sn,l Sl ,gSg,2l 8S2l 8,2n

2 sin~u l /2!2 sin~u l 8/2!
J ,

which leads to

dun
~recer!5 (

g51

Ng vn,g

xg
.

Ng denotes the dimension of the center block. In the follo
ing we drop the subscriptn.

To devise a statistical treatment for the center block,
make the following assumptions concerning the distribut
of the chaotic eigenphasesu5$ug%, and the effective over-
lapsv5$vg%, g51, . . . ,Ng . We assume the following:

~1! There is no correlation between the overlaps and
eigenphases.

~2! Eigenphasesug are real, ranging from@2p,p#, and
the joint distribution functionP(u) of the eigenphases eithe
~a! is Poissonian, i.e., the eigenphases are uncorrelated, o~b!
has the property that degeneracies of eigenphasesug are sup-
pressed~as is the case in Dyson random matrix ensemble!.

~3! The overlaps are mutually independent Gaussian r
dom variables with zero mean and variances2. s will be
fixed in terms ofS-matrix elements in the following.

The joint probability distribution of theug andvg is then
given by
-

e
n

e

n-

P~u,v!5P~u! )
g51

Ng 1

A2ps2
expS 2

vg
2

2s2D .

We can write the probability density ofdu in the form

P~du!5E duP~u!P~duuu!, ~38!

whereP(duuu) is the conditional probability ofdu given u,
and the integral is performed over@2p,p#Ng. For fixedu,
the vg /xg are mutually independent Gaussian random va
ables with variances (s/g)2, and thusP(duuu) is a Gaussian
of variances2h(u), whereh(u) is given by

h~u!5 (
g51

Ng 1

xg
2

.

To perform the integration overu in Eq. ~38!, we introduce
h(u) as an additional integration variable by rewritin
P(du) as

P~du!5E
0

`

dhP~h!
1

A2ps2h
expS 2

du2

2s2h
D ~39!

with

P~h!5E duP~u!dS h2(
g

1

xg
2D . ~40!



al
of

e

th

c

-
i-
in

o

s
n

e
er

s
tio

ly

.
of
n
f

o
e of
riva-
-
to
n-
Our
in
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Note that, by virtue of the central limit theorem, almost
overlap distributions will give rise to a Gaussian form
P(duuu) in Eq. ~39!.

We continue by examining the large-h asymptotic behav-
ior of P(h) for the two cases listed in condition~2!.

~a! If the ug obey a Poissonian distribution, thenh is a
sum over independent identically distributed variableshg ,
each of which is distributed as

P~hg!5
1

2pE2p

p

dudS hg2
1

x2D
5H 1/@2phgAhg21/4# for hg> 1

4 ,

0 for hg, 1
4 .

Note that for largehg this asymptotically behaves lik
P(hg);1/2phg

3/2. In order to obtain the distributionP(h)
of the sum, we evaluate the characteristic function

P̂1~v!5
1

2pE1/4

`

dy
e2 ivy

yAy21/4
5erfcSAiv

2 D
@see@43#, Eqs. ~3.383.4! and ~9.236.1!#, where erfc(x) de-
notes the complementary error function. We use the fact
the characteristic function of a sum ofNg independent ran-
dom variables is the product of all their characteristic fun
tions, to get

P~h!5
1

2pE2`

`

dv erfcNgSAiv

2 D eivh.

The structure of theh→` tail is determined by the nonana
lytic behavior ofP̂1(v) at the origin. Thus we can approx
mateP(h) in that regime by expanding in a power series
v,

erfcNgSAiv

2 D 512NgAiv

p
1OS Ng

2v

2p D .

The leading~nonanalytic! square root term is proportional t
Ng . Thus the frequency dependence scales withNg

2 , and the
resulting distribution P(h) scales asymptotically a
Ng

23P(h/Ng
2). We thereby obtain the asymptotic distributio

of h,

P~h!}
Ng

h3/2
for h→`. ~41!

~b! Next we will evaluateP(h) for a general eigenphas
distribution in which the occurrence of eigenphase degen
cies is suppressed@44#. In order to rewrite the distribution
function Eq.~40! in terms of products over the eigenvalue
rather than sums over them, we introduce the integra
parametera5)gxg by writing

P~h!5E
21

1

daE duP~u!dS h2(
g

1

xg
2D dS a2)

g
xgD .

In the firstd function, we can now substitute
l

at

-

a-

,
n

(
g

1

xg
2

5
1

a2(g
)

g8Þg

xg8
2 [

1

a2(g
X g

2 ,

where we have introduced the notationXg5)g8Þgxg8. By
changing the integration variablea°a/Ah we can extract
the explicith dependence from the firstd function and arrive
at

P~h!5
1

h3/2E duP~u!E
2h1/2

h1/2

dadS 12
1

a2(g
X g

2D
3dS a

Ah
2)

g
xgD . ~42!

By inspection of the firstd function, and recalling that
uXgu,1, we see that contributions to the integral can on
arise from the rangeuau,Ng

1/2. However, for finitea, the
secondd function is in the limith→` given by

dS a

Ah
2)

g
xgD ;(

g
d~xg!uXgu21, ~43!

provided all thexg aredistinct. Hence, the secondd function
is asymptotically independent ofa, and thea integration can
be performed explicitly, using

E
2`

`

dadS 12
1

a2(g
X g

2D 5S (
g
X g

2D 1/2

. ~44!

Finally, we substitute the form~43! of the secondd function
and the result~44! of thea integration into Eq.~42!. Noting
that if xg50, then Xg850 for all g8Þg, and that
d(ug)5d(xg), we arrive at the distribution

P~h!;
Ng

2ph3/2
for h→`. ~45!

It is remarkable that the distributionsP(h) in Eqs.~41! and
~45! display the same asymptotic power-law dependence

Finally, we note that, by virtue of the Gaussian form
the integrand in Eq.~39!, the integral depends primarily o
large h>du2/s2. To extract the asymptotic behavior o
P(du), we only need the asymptotic form ofP(h) for large
h. Inserting Eq.~45! into Eq. ~39! gives

P~du!;NgE
0

`

dh
e2du2/2hs2

~2p!3/2h2s
5

sNg

pA2pdu2
~46!

for largedu. This is the large-du tail of a Cauchy distribu-
tion, in accordance to the prediction of Leyvraz and Ullm
@9#. We stress that we have derived this result for the cas
a Poissonian eigenphase distribution and, in a second de
tion, without assuming any explicit form of the joint eigen
phase distribution function. In the latter case, we only had
make the assumption that the joint distribution function va
ishes whenever two eigenphases approach each other.
derivation is therefore more general than the one given
@9#.
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1438 57S. D. FRISCHAT AND E. DORON
In a broader context, it is also interesting to mention t
the calculation~b! can be generalized to the case of a dis
bution

Pn~du!5E duP~u!dS h2(
g

1

xg
2nD , ~47!

which corresponds to the distribution resulting from a s
over paths that contains anth power of the phase denomina
tor. The procedure is analogous to the casen51 just de-
scribed, but for a substitutiona→a/h1/2n, and one arrives a
Pn(h)5(2pn)21Ng /h2(2n11)/2n. This leads to a large-du
splitting distribution

P~du!}
1

du~n11!/n
. ~48!

Let us return to Eq.~46!. Having integrated out the eigen
phase dependence ofP(du), we are left with the determina
tion of the variances2 of the effective overlapsvn,g . It is
given by

s2'K U2 Re(
l ,l 8

e2 i ~ug1u l 1u l 8!/2

3
Sn,l Sl ,gSg,2l 8S2l 8,2n

2 sin~u l /2!2 sin~u l 8/2!
U2L .

We assume the phases of theSl ,g to be arbitrary and uncor
related, assume theu l to be real, and absorb all phases in
a random phase factor exp(ifl ,l 8,g). Using uSl ,gu
5uSg,l u5uS2l ,gu5uSg,2l u we can write

s2'K U (
l ,l 8

uSn,l Sn,l 8Sl ,gSl 8,gucosf l ,l 8,g

2 sin~u l /2!sin@~u l 82un
~0!!/2#

U2L
5 (

l ,l 8

uSn,l Sn,l 8u
2^uSl ,gSl 8,gu2&

8 sin2~u l /2!sin2~u l 8/2!
, ~49!

using the fact that thef l ,l 8,g are uncorrelated and equidis
tributed on the interval @2p,p#. Let us now write
uSl ,gu25Ng

21uSl ,Cu2j l ,g
2 , where uSl ,Cu25(guSl ,gu2 is the

total coupling of thel state to the chaotic block, see also E
~27!, and where thej l ,g are independent Gaussian variab
with unit variance. Using that̂j l ,g

2 j l 8,g
2 &5(21d l ,l 8) we

find a statistical enhancement of the diagonal (l 5l 8)
terms. More importantly, the sum is dominated by the ter
with the smallest phase denominators. Consequently, we
neglect the nondiagonal terms and write

s2'
3

8Ng
2(

l
U Sn,l Sl C

sin~u l /2!
U4

. ~50!

B. Median splittings

As we have just shown, the splitting distribution behav
asymptotically likeP(du);du22, and it is well known that
the mean of a Cauchy distribution does not exist. Theref
t
-

.

s
an

s

e,

a ‘‘typical’’ value for the level splittings must be obtaine
otherwise. We propose to consider themedianuduuM of uduu
defined by

2E
uduuM

`

d~du!P~du!5
1

2
.

The factor of 2 on the left hand side arises from the fact t
we integrate over positivedu only. By extrapolation of the
asymptotic form ofP(du) as given by Eq.~46! towards
smalleruduu, we find

uduuM;
4sNg

pA2p
. ~51!

Inserting the variances2 of Eq. ~50! into Eq.~51! we finally
get for the median splitting

uduuM ,n'
1

pS (
l
U Sn,l Sl ,C

sin@~u l 2un
~0!!/2#

U4D 1/2

, ~52!

where we have inserted the index for then dependence
again, as well as the phaseun

(0) . Formula~52! for the median
splittings estimates the enhancements of tunneling splitti
due to chaos-assisted processes and constitutes one o
central results of this work. Note that all quantities appear
in Eq. ~52! are defined in terms if the originalS matrix, and
the mostdirect andquantitativecheck of the chaos-assiste
tunneling picture yet becomes possible.

We note that Eq.~52! can be used to recast Eq.~46! for
the splitting distribution in a numerically more convenie
form

P~dun!5
uduuM ,n

4dun
2

. ~53!

We now turn to the discussion of the approximatio
made in the derivation of the central results Eqs.~46!,~52!,
and ~53! for the splitting distributions and the median spl
tings. There are four sources of error.~i! The estimate~50!
and ~28! for the variances2 is correct only within an order
of magnitude due to the ambiguity ofl COE @see discussion
after Eq.~28!#. Up to now, ana priori determination ofl COE
was not possible. Note, however, that the sizeNg of the
center block does not enter in the expressions.~ii ! The effect
of imaginary parts of theug is not included in our calcula-
tion. By unitarity of the block-transformed matrix
Im$ug%;( l uSl ,gu2, which in the splitting distribution intro-
duces a cutoff of the Cauchy-like tail atuduu
;uSn,l /sin(ul /2)u2. The resulting relative correction of th
median splitting isO(uSl ,Cu2). ~iii ! Extrapolation of the
asymptotic tail towards smallerdu is another source of erro
of O(1). @For example, the median calculated from an ex
Cauchy distribution 1/p(11x2) is 11A2'2.4, whereas the
median estimated by integrating over its tail 1/px2 is
4/p'1.3.# ~iv! Our five-block model neglects the effect o
transport barriers other than the one separating the be
from the center of the chaotic block. Further transport ba
ers lead to the inhibition of tunneling flux and thereby d
crease the splitting.
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57 1439DYNAMICAL TUNNELING IN MIXED SYSTEMS
We conclude that Eq.~52! reproduces the exact media
splittings only up to a factor of the order one. If the negle
of remnant phase-space structure is the dominant sourc
error, then Eq.~52! gives an overestimate. However, the e
ror is expected to be independent ofn, and we can correct fo
it by introducing anoverall factorc that we extract from the
numerical data. Equation~53! for the splitting distribution
function has to be corrected correspondingly.

We finally return to the issue of the two different repr
sentations Eq.~22! and Eq.~23! for the splitting that differ
by taking either imaginary parts of exp(2iNun

(0))@SN#n,2n or
absolute values of@SN#n,2n . In a statistical treatment, thes
two approaches give slightly different results, because in
average over the random phasesf l ,l 8g , one obtains
^ueif l ,l ,gu&51 after taking absolute values, as opposed
^cos2(fl ,l ,g)&51/2 after taking imaginary parts. The me
dian splittings derived from Eq.~23! would therefore be
twice the splittings predicted in Eq.~52!. This explains why
a formula given by us earlier@Ref. @10#, Eq. ~8!# differs by a
factor two from the one in Eq.~52!.

C. Numerical results

This section is concluded by a presentation of numer
data for the eigenphase splitting and its distribution for
annular billiard. We choose parameter valu
k5100, a50.4, d50.2 and vary the outer radiusR over
490 values betweenR50.985 andR50.1035. Recall that
changingR leaves theuSn,l u constant and changes only th
eigenphase configuration and the couplingsSl ,g . Figure 14
depicts the median values of eigenphase splittings of d
blets peaked at angular momentan565, . . . ,80 as afunction
of n. Full circles represent median splittingsuduuM ,n as ob-
tained from numerical diagonalization. Since the diagon
ization routine cannot differentiate between eigenvalues
are closer than;10215, splittings beyondn575 could not
be resolved directly. Instead, they were extracted by us
Eq. ~23!, that is, by numerical calculation of 2@SN#n,2n /N
for largeN&udunu21. Empty circles represent median spl

FIG. 14. Median splittingsuduuM ,n as a function of angular mo
mentum~logarithmic plot!. Exact splittings are obtained from nu
merical diagonalization~full circles!, calculation ofu@SN#n,2nu for
large N ~empty circles!, and estimates are taken from the medi
formula ~52! and corrected byc51/6 ~dashed line!.
t
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e

o

l
e
s

u-

l-
at

of

tings thus obtained from 30 configurations withR ranging
from R51 to R51.3. We have taken the edge region
extend over angular momental 556, . . . ,64 andhave cho-
senl COE550. To account for the overestimate of the spl
ting by Eq.~52!, theoretical predictions are multiplied by a
overall factorc'1/6. The dashed line shows the resultin
approximation for the median splittings. Apart from the fa
tor c, the formula~52! is in good agreement with the exa
median splittings.

Let us turn to the splitting statistics. If one is interested
the fluctuations due to changes in the chaotic dynamics,
first has to discard the slow modulation due to the change
beach layer properties. We do so by considering the ‘‘
duced’’ splitting dũn of Eq. ~37! for those values ofR at
which one singlel is dominant in both shift and splitting
~for n565, . . .,67, and herel 5n27). We find that the
median ofdũn is approximately equal toc, independent ofn
~not shown!. Figure 15 confirms that the distributionP(udũu)
falls off like a Cauchy distribution of widthc. For the figure,
750 exact splittings were transformed to reduced ones~see
inset! and collected in a histogram with log-binning~main
figure, solid line!. This is compared to the Cauchy distribu

tion 2cp21/(c21dũ 2) ~main figure, dashed line!. The
agreement is very good.

Finally, we show in Fig. 16 the distribution functio
P(udunu/uduuM ,n) of exact splittings divided by the media
splittings displayed in Fig. 14. The actual splittings display
power lawP(uduu);uduu23/2 ~dashed line!. This can be un-
derstood by realizing that the variation inR is sufficiently
large to average not only over avoided crossings betw
chaotic and regular eigenphases, but also over avoided c
ings between regular and beach eigenphases. These av
crossings, however, appear in the sum~31c! with a squared
phase denominatordn,l

22 , and we have argued in Eq.~48! that
the distribution generated by such contributions display
power-law decay with exponent23/2. The exponent23/2
conforms to the findings of Leyvraz and Ullmo@9#, who
studied chaos-assisted tunneling in the presence of an im
fect transport barrier in the chaotic sea.

FIG. 15. Distribution functionP(udũu) for the ‘‘reduced’’ split-

ting udũu ~solid line!, compared to the predicted Cauchy distributio
~dashed line!, double logarithmic plot. Inset: ‘‘reduced’’ splittings
obtained after unfolding the modulations due to the beach laye
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VI. DISCUSSION

A. Possible experimental realizations

Even though the occurrence of chaos-assisted tunne
should be a very general phenomenon, an experimenta
servation of the effect has not yet been made. The m
difficulty might not be tomeasurethe effect, but torecognize
it. As long as little is known about tunneling in multidimen
sional mixed systems in general, it will be difficult to sep
rate out the different contributions to the tunneling rates a
to identify the effects of classical transport. It is our stro
suspicion that, as soon as qualitative theories for experim
tal systems are developed, chaos-assisted tunneling will
out to be a frequent effect in the splitting of dynamical tu
neling doublets.

1. Superconducting microwave cavities

It has been argued in this work that the annular billia
serves as an excellent paradigm for chaos-assisted tunne
An experimental realization of it is presently investigated
the Darmstadt group of Richteret al. @25,45#. Performing
resonance measurements on a superconducting niobium
crowave cavity, the Darmstadt group has extracted hi
quality spectra in the frequency range 0–20 GHz, cor
sponding tok50 –50 in our units, but experimental accura
does not yet allow a resolution of the splittings of hig
angular-momentum doublets. However, it might be just
interesting to measure the energy splittings ofbeachdou-
blets, as these splittings are also chaos assisted, but by o
of magnitudes larger than those of the regular doublets.

2. Atomic systems

Atomic systems have served as paradigms of many
dictions in quantum chaos, and there are some atom
which an observation of chaos-assisted tunneling might
conceivable. Hydrogen in a weak magnetic field@46# may be
such a case. In the weak-field limit, the classical system
symmetry-connected regular islands corresponding to l
angular-momentum motion along the field axis on either s
of the hydrogen core. These islands are separated by a
otic sea, and dynamical tunneling between the correspon

FIG. 16. Distribution of original eigenphase splittingsudunu, for
eachn divided by the medianuduuM ,n ~solid line!, double logarith-
mic plot. Dashed line: comparison to adu23/2 power-law decay,
prefactor fitted to the data.
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low-angular momentum quantum states should therefore
enhanced by chaos-assisted processes. It is, however
clear whether these splittings are large enough to be exp
mentally accessible.

Another example might be provided by ‘‘frozen-plane
configurations in helium in which one electron is dynam
cally localized far away from the core and the other one
localized near the core and close to the axis between
and outer electron. By exchange of inner and outer elect
there are two symmetric configurations corresponding
classically regular motions that are separated by chaotic
namics@47#.

Finally, a much-studied system in the field of quantu
chaos, the quantum kicked rotor, has recently been exp
mentally realized by Mooreet al. @48# using ultracold so-
dium atoms in pulsed, near-resonant light. Rotor syste
have been considered by several groups in studies of
namical tunneling in the presence of chaos@22,49#, and a
link between theory and experiment might soon become p
sible. Again, the experiment might still be far from the r
quired degree of accuracy.

3. Open systems

Chaos-assisted processes can enhance not only tunn
oscillations, but also thedecayof regular modes in a mixed
open system in which the dominant coupling to the co
tinuum is mediated by states residing on the chaotic lay
Experimental realizations of such systems were studied
Nöckel et al. and others@50# who considered theQ spoiling
of whispering gallery modes in deformed lasing droplets.
a recent work, Hackenbroich and No¨ckel @51# also consid-
ered mixed systems in which the direct coupling of regu
modes to the continuum is suppressed, but where cha
states have sizable coupling to the continuum. Regu
modes may then decay via a multistep process of t
regular-chaotic-continuum. Their results were motivated b
a study of a modified version of the annular billiard, in whic
the outer circle is replaced by a mirror, and the billiard
assumed to have higher optical density than the exterior
gion outside the mirror. It was found that chaos-assisted
cay can lead a dramatic enhancement of level widths.

Finally, Zakrzewskiet al. @52# have recently proposed
atomic systems—hydrogen in either linearly or circularly p
larized microwave fields—that display ionization via chao
assisted tunneling.

B. Discussion and conclusions

Having discussed the experimental perspectives, on
immediately led to the question of the general applicabi
of the method and the block-matrix model proposed in t
work.

It is clear that the scattering problem must be solved se
rately for each system under consideration. In a general
tem, it might be very difficult to formulate theS matrix and
to find a basis in which theS-matrix elementsSn,n and
S2n,2n corresponding to motion on the tunneling tori a
sufficiently close to unity. It must however be said in fav
of the scattering approach that the difficulty of finding
EBK-quantization scheme in nonseparable systems is by
means inherent to the scattering approach, but prese
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57 1441DYNAMICAL TUNNELING IN MIXED SYSTEMS
poses one of the most serious problems of semiclass
theory in general@53#. ~In fact, it is one of the fortunate
aspects of the annular billiard that the angular momen
basis is semiclassically diagonal in the region of regular m
tion.!

In situations whereS6n,6n are not sufficiently close to
unity, Eqs.~15! and ~16! may still work well, provided that
sufficient knowledge of eigenvector structure is availa
~see@34# for an application to the case of rough billiards@54#
and other systems!. However, calculation of the splitting b
summation over long paths fromn to 2n relies on a suffi-
cient localization ofun& at thenth component.

Clearly, the block matrix model used in the summati
over paths must be adopted to the specific transport situa
encountered. In the case of structure other than the be
layers, additional blocks must be introduced. This does, h
ever, not lead to problems in the summation Eq.~30! as long
as the outermost tunneling element is smaller than any of
internal coupling elements. At present, there is noa priori
method to determine the border indices of neighbor
blocks inside the chaotic layer. However, use of class
information will warrant correct results to within an order
magnitude.

We note that our treatment is not limited to the case of
S-matrix symmetrySn,m5S2n,2m and could easily be ex
tended to nonsymmetric systems~for example, an annula
billiard with the inner circle replaced by some nonsymmet
shape!, or even to the case of tunneling at an acciden
degeneracy between two eigenphases. In the summation
paths, we merely require that the initial and the final diago
S-matrix elements are equal,Sni ,ni

5Snf ,nf
. Note, however,

that in the nonsymmetric case the contributions^ni uSNuni&
and ^nf uSNunf& in Eq. ~13! will in general not cancel. Their
difference is then likely to dominate the splitting.

It is one of our main results to point out the importance
the beach layer to the chaos-assisted tunneling phenome
The appearance of classically chaotic, but not too unsta
regions around regular islands is generic in mixed syste
Such regions should always support states if the mixing w
the rest of phase space is sufficiently slow~or if energy is
sufficiently low!. However, it must be checked whether som
of the importance of the beach layer should actually be
tributed to the tunneling ridge that favors tunneling proces
into the beach region~see Fig. 5!. Such a test is given in ou
version of the Bohigas numerical experiment; see Sec. IV
We have verified that, at smalld, there areno visible tunnel-
ing ridges, and the tunneling amplitudes decay monoto
cally away from the diagonal. Nevertheless the beach reg
still governs the behavior of the eigenphase splittings~see
Fig. 11!. It must, however, be noted that, in this case,
correspondence between slow splitting modulations and
shift breaks down. The shift is then determined by pa
n→n21→n instead of paths leading to the beach and b
to n.

It is another interesting point that the statistical resu
found in Sec. V are independent of the explicit joint dist
bution function of eigenphases, but can be derived un
rather general assumptions. We merely require that the j
distribution of eigenphases vanishes at eigenphase dege
cies.
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This generality is extended even further by the obser
tion that enhancement of tunneling can also appear with h
of regular states. Indeed, in Sec. IV F we have even o
served the case of tunneling between achaoticdoublet via a
resonant regular state. This should serve as a reminder
only the phase-spacetopologydetermines the occurrence o
tunneling, not its regularity or chaos, and that chaos-assi
tunneling is, in fact, a more general phenomenon
transport-assisted tunneling. Additionally, the tunneling ra
seems to be rather insensitive to the rate of classical
connecting the opposite beach regions — as long as t
exists a classically allowed path between them. When cha
ing d in Sec. IV F, most of the tunneling enhancement w
related to the change of tunneling properties between
torus and the beach region. Progressively rapid class
propagation across the chaotic layer was related to tunne
enhancement of only one order of magnitude — out of fi
orders of magnitude in total (d50.07–0.15!.

Our study of chaos-assisted tunneling has led to the m
quantitative treatment of the phenomenon to date. At
same time, some challenging problems have been enc
tered. For example, we have seen that tunneling can o
between doublets localized on ‘‘soft’’ phase-space structu
such as the beach regions or scarring periodic orbits.
these states, transport from one phase-space structure
symmetry-related partner is classically allowed, but quant
mechanically forbidden. Apart from the intriguing questio
about the quantum-mechanical localization mechanism
ing rise to these states, their doublet structure introduces
ditional complications. For example, some of the doubl
tunnel via resonant processes, while others tunnel directly
quantitative treatment would certainly be desirable.

C. Summary

We studied dynamical tunneling between symmet
related phase-space tori that are separated by a chaoti
gion. Using scattering theory, we introduced a unitary ma
S that constitutes the quantum analogue of the classical P
carémap. By expressing eigenphase splittings and shifts
terms of matrix elements of high iterates ofS, we related
these quantities to paths in phase space. While paths con
uting to the splitting connect the two tunneling tori, pat
that contribute to the shift lead from a tunneling torus back
itself, leaving the torus at least once. We performed the s
mation over paths within a block-matrix approximation, a
locating different blocks to the two regular regions, the ch
otic sea, and the two intervening beach layers. Within t
approximation, we derived analytic expressions for the c
tributions to the tunneling properties. Explicit inclusion
the beach blocks enabled us to predict a number of n
effects that could be verified for the case of the annular
liard. ~I! As a function of an external parameter the splitti
varies on two scales: a rapid one attributed to resonance
nominators of regular and chaotic states, and a slow
attributed to ~squared! resonance denominators betwe
regular states and beach states. This diversity of scales is
observed in statistical quantities, e.g., the distribution fu
tion P(du) of eigenphase splittingsdu. When averaging
over a sufficiently small range of a system parameter~such
that beach properties remain effectively constant!, the split-
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tings are distributed with a Cauchy tailP(du);du22. When
averaging over a large parameter range~such that beach
resonances occur!, the squared resonance denominators l
to a P(du);du23/2 power-law behavior.~II ! Typically, the
shift varies on the slow scale only and is much larger th
the splitting.

Analytical formulas at hand, we could also assess the r
tive importance of tunneling amplitudes and classical tra
port properties within the chaotic sea. As the annular
liard’s eccentricity is increased, most of the enhancemen
tunneling rates can be attributed to the tunneling amplitu
and resonances between regular tori and the beach reg
Progressively faster classical transport within the chaotic
was found to play a minor role in the splitting enhanceme

Finally, we derived the asymptotic formP(du);du22 of
the splitting distribution’s large-du tail ~average over a sma
parameter range!. In this calculation, no explicit assumptio
about the form of the joint distribution function of chaot
eigenphases was made; it was merely required that the
tribution is either Poissonian or vanishes for degene
eigenphases. In order to give ‘‘typical’’ splitting values, w
calculated the median splitting by averaging over the pr
erties of the chaotic sea. Apart from an overestimate by
overall factor;5, the predicted values for the median spl
tings closely follow the numerical results over many ord
of magnitude.
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APPENDIX: SUMMATION OVER PATHS
IN THE SPLITTING FORMULAS

In this Appendix we will derive formula~30! that contains
the contributions of the different families of paths to the f
sum over paths

Pn,2n
N 5 (

$n→2n%
)
i 51

N21

Sl i ,l i 11

leading fromn to 2n. Recall thatPn,2n
N is related to the

splitting of the doubletdun
6 by Eq. ~25!. As N;k/dun is

taken to be large, we need only collect the leading-or
contribution inN.

Let us consider the general case in which theS matrix
block diagonalized into any number of block
S( i , j ), i , j 50, . . . ,K. For the summation over paths, w
merely require that the outermost couplingsSl,l8

(0,j ) andSl,l8
( j ,K)

be much smaller than entries of the internal coupling ma
ces. Suppose we want to collect the contributions from pa
with M11 steps that start fromn and pass through theM
intermediate diagonal blocksS( i 1 ,i 1),S( i 2 ,i 2), . . . ,S( i M ,i M)

before arriving at2n, and let us for the moment negle
repetitions in the block indices. It is equivalent to summi
over all such paths in the block-tridiagonal matrix
d

n

a-
s-
l-
of
s
ns.
a

t.

is-
te

-
n

s

F.
n
nt

r

i-
s

S D0 C08

C0 D1 C18 0

C1 D2 �

� � CM218

0 CM21 DM CM8

CM D0

D , ~A1!

where each of the diagonal blocksDi5Sl,l
( i ,i )dl,l8 is coupled

to its neighbor by the coupling blockCi5Sl,l8
( i ,i 11) . C8 is a

short notation for the other coupling block,Ci85Sl8,l
( i 11,i )

~which need, however, not be the transpose ofCi , asS is in
general not symmetric!. D05Sn,n5S2n,2n contains the di-
agonalS-matrix element associated with the tunneling tor

In addition to summations over the matrix indices of ea
block, we have to sum over the staying timesN0 , . . . ,NM
inside the diagonal blocksD0 , . . . ,DM , respectively. Ex-
plicitly, we have to perform the sum

(
$N0 , . . . ,NM%

D0
N0C0D1

N1
•••DM

NMCMD0
N2N02N1 . . . 2NM2M

5D0
~N2M ! (

$N0 , . . . ,NM%
C0~D1 /D0!N1

•••~DM /D0!NMCM ,

where the summations go overNM50, . . . ,N2M ,
NM2150, . . . ,N2NM2M , and so on, up to
N05N2NM2NM212•••2N12M . Summing overN0 is
trivial and generates a factor (N2NM2•••2N12M11).
The remaining sums are then performed by repeated us
the formula

(
r50

R

~R2r11!zr5
R12

12z
1

zR1221

~12z!2
. ~A2!

For z5Di /D0 of absolute valueuzu,1, we need only keep
the termR/(12z), because in further summations the r
maining terms generate subdominant contributions ofO(1)
or O(uzuN). Neglecting these terms is justified in our cas
because we have assumed that the outermost~tunneling! ma-
trix elements are much smaller than internal transition e
ments and by unitarity,uDi u,uD0u for all iÞ0. Keeping only
the term R/(12z) of Eq. ~A2!, the structure of the sum
always remains the same, and each summation results
multiplicative factor (12Di /D0)21. We arrive at the result
that the sum over paths of lengthM passing through the
blocksD0 , . . . ,DM is given as

Pn,2n
N~ i 1 , . . . ,i M !

;ND0
~N21!C0)

i 51

M F 1

D02Di
Ci G . ~A3!

Equation~A3! was formulated without allowing for rep
etitions in block indices and contains all coupling eleme
to lowest order. Loops in block index space that stay with
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5the inner blocks can, however, be included by allowi
repeated indices in Eq.~A3!. Paths withk repetitions of the
index combination (i ,i 11), say, then give rise to contribu
tions containing a factor @(D02Di)

21Ci8(D0

2Di 11)21Ci #
k. The number of repetitions can be summ

over, which leads to an expression as in Eq.~A3! with the
replacement
cs

.

-

-

h-

s.

ys

e

-

p

1

D02Di
Ci°

1

D02Di
CiF12

1

D02Di 11
Ci8

1

D02Di
Ci G21

.

All types of loops can be included by the correspondi
replacements, giving rise to a continued fraction structure
Pn,2n

N( i 1 , . . . ,i M) .
ev.

ett.

tt.

or

ms-

er

-

ys.
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